Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nanomaterials (Basel) ; 13(14)2023 Jul 19.
Article in English | MEDLINE | ID: mdl-37513114

ABSTRACT

Carbon quantum dots (CQDs) are known for their biocompatibility and versatile applications in the biomedical sector. These CQDs retain high solubility, robust chemical inertness, facile modification, and good resistance to photobleaching, which makes them ideal for cell bioimaging. Many fabrication processes produce CQDs, but most require expensive equipment, toxic chemicals, and a long processing time. This study developed a facile and rapid toasting method to prepare CQDs using various slices of bread as precursors without any additional chemicals. This fast and cost-effective toasting method could produce CQDs within 2 h, compared with the 10 h process in the commonly used hydrothermal method. The CQDs derived from the toasting method could be used to bioimage two types of colon cancer cells, namely, CT-26 and HT-29, derived from mice and humans, respectively. Significantly, these CQDs from the rapid toasting method produced equally bright images as CQDs derived from the hydrothermal method.

2.
Nanomaterials (Basel) ; 10(8)2020 Aug 11.
Article in English | MEDLINE | ID: mdl-32796659

ABSTRACT

Biocompatible carbon quantum dots (CQDs) have recently attracted increased interest in biomedical imaging owing to their advantageous photoluminescence properties. Numerous precursors of fluorescent CQDs and various fabrication procedures are also reported in the literature. However; the use of concentrated mineral acids and other corrosive chemicals during the fabrication process curtails their biocompatibility and severely limits the utilization of the products in cell bio-imaging. In this study; a facile; fast; and cost-effective synthetic route is employed to fabricate CQDs from a natural organic resource; namely bread; where the use of any toxic chemicals is eliminated. Thus; the novel chemical-free technique facilitated the production of luminescent CQDs that were endowed with low cytotoxicity and; therefore; suitable candidates for bioimaging sensors. The above mentioned amorphous CQDs also exhibited fluorescence over 360-420 nm excitation wavelengths; and with a broad emission range of 360-600 nm. We have also shown that the CQDs were well internalized by muscle myoblasts (C2C12) and differentiated myotubes; the cell lines which have not been reported before.

SELECTION OF CITATIONS
SEARCH DETAIL
...