Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Neuron ; 107(4): 644-655.e7, 2020 08 19.
Article in English | MEDLINE | ID: mdl-32544386

ABSTRACT

Complex behavioral phenotyping techniques are becoming more prevalent in the field of behavioral neuroscience, and thus methods for manipulating neuronal activity must be adapted to fit into such paradigms. Here, we present a head-mounted, magnetically activated device for wireless optogenetic manipulation that is compact, simple to construct, and suitable for use in group-living mice in an enriched semi-natural arena over several days. Using this device, we demonstrate that repeated activation of oxytocin neurons in male mice can have different effects on pro-social and agonistic behaviors, depending on the social context. Our findings support the social salience hypothesis of oxytocin and emphasize the importance of the environment in the study of social neuromodulators. Our wireless optogenetic device can be easily adapted for use in a variety of behavioral paradigms, which are normally hindered by tethered light delivery or a limited environment.


Subject(s)
Agonistic Behavior/physiology , Behavior, Animal/physiology , Neurons/physiology , Optogenetics/methods , Oxytocin/metabolism , Social Behavior , Wireless Technology , Animals , Mice , Neurons/metabolism
2.
Nat Neurosci ; 22(12): 2023-2028, 2019 12.
Article in English | MEDLINE | ID: mdl-31686022

ABSTRACT

Personality traits can offer considerable insight into the biological basis of individual differences. However, existing approaches toward understanding personality across species rely on subjective criteria and limited sets of behavioral readouts, which result in noisy and often inconsistent outcomes. Here we introduce a mathematical framework for describing individual differences along dimensions with maximum consistency and discriminative power. We validate this framework in mice, using data from a system for high-throughput longitudinal monitoring of group-housed male mice that yields a variety of readouts from across the behavioral repertoire of individual animals. We demonstrate a set of stable traits that capture variability in behavior and gene expression in the brain, allowing for better-informed mechanistic investigations into the biology of individual differences.


Subject(s)
Individuality , Models, Theoretical , Personality , Social Behavior , Animals , Behavior, Animal , Hierarchy, Social , Male , Mice
3.
Nat Neurosci ; 19(11): 1489-1496, 2016 11.
Article in English | MEDLINE | ID: mdl-27428651

ABSTRACT

Social encounters are associated with varying degrees of emotional arousal and stress. The mechanisms underlying adequate socioemotional balance are unknown. The medial amygdala (MeA) is a brain region associated with social behavior in mice. Corticotropin-releasing factor receptor type-2 (CRF-R2) and its specific ligand urocortin-3 (Ucn3), known components of the behavioral stress response system, are highly expressed in the MeA. Here we show that mice deficient in CRF-R2 or Ucn3 exhibit abnormally low preference for novel conspecifics. MeA-specific knockdown of Crfr2 (Crhr2) in adulthood recapitulated this phenotype. In contrast, pharmacological activation of MeA CRF-R2 or optogenetic activation of MeA Ucn3 neurons increased preference for novel mice. Furthermore, chemogenetic inhibition of MeA Ucn3 neurons elicited pro-social behavior in freely behaving groups of mice without affecting their hierarchal structure. These findings collectively suggest that the MeA Ucn3-CRF-R2 system modulates the ability of mice to cope with social challenges.


Subject(s)
Amygdala/metabolism , Receptors, Corticotropin-Releasing Hormone/metabolism , Social Behavior , Urocortins/metabolism , Animals , Behavior, Animal/physiology , Corticotropin-Releasing Hormone/metabolism , Inhibition, Psychological , Mice , Mice, Knockout , Neurons/metabolism , Receptors, Corticotropin-Releasing Hormone/genetics , Urocortins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...