Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
Add more filters










Publication year range
1.
Angew Chem Int Ed Engl ; 62(33): e202307236, 2023 Aug 14.
Article in English | MEDLINE | ID: mdl-37349960

ABSTRACT

Earth's primordial atmosphere was rich in ammonia and methane. To understand the evolution of the atmosphere, these two gases were used to make photoredox-active nitrogen-doped carbon (NDC). Photocatalysts such as NDC might play an important role in the development of geological and atmospheric chemistry during the Archean era. This study describes the synthesis of NDC directly from NH3 and CH4 gases. The photocatalyst product can be used to selectively synthesize imines by photo-oxidization of amines, producing H2 O2 simultaneously in the photoreduction reaction. Our findings shed light on the chemical evolution of the Earth.

2.
ChemSusChem ; 16(13): e202202255, 2023 Jul 07.
Article in English | MEDLINE | ID: mdl-36882386

ABSTRACT

Broadening the visible light absorption range and accelerating the separation and migration process of charge carriers are effective ways to improve photocatalytic quantum efficiencies. In this study, we show that poly heptazine imides with enhanced optical absorption and promoted charge carrier separation and migration could be obtained by means of a rational design of the band structures and crystallinity of polymeric carbon nitride. Copolymerization of urea with monomers such as 2-aminothiophene-3-carbonitrile would first generate amorphous melon with enhanced optical absorption, while further ionothermal treatment of melon in eutectic salts would increase the polymerization degree and create condensed poly heptazine imides as final products. Accordingly, the optimized poly heptazine imide presents an apparent quantum yield of 12 % at 420 nm for photocatalytic hydrogen production.


Subject(s)
Imides , Hydrogen/chemistry , Sodium Chloride/chemistry , Imides/chemistry , Catalysis
3.
Chem Sci ; 13(25): 7541-7551, 2022 Jun 29.
Article in English | MEDLINE | ID: mdl-35872826

ABSTRACT

Photoelectrochemical (PEC) water splitting is an appealing approach by which to convert solar energy into hydrogen fuel. Polymeric semiconductors have recently attracted intense interest of many scientists for PEC water splitting. The crystallinity of polymer films is regarded as the main factor that determines the conversion efficiency. Herein, potassium poly(heptazine) imide (K-PHI) films with improved crystallinity were in situ prepared on a conductive substrate as a photoanode for solar-driven water splitting. A remarkable photocurrent density of ca. 0.80 mA cm-2 was achieved under air mass 1.5 global illumination without the use of any sacrificial agent, a performance that is ca. 20 times higher than that of the photoanode in an amorphous state, and higher than those of other related polymeric photoanodes. The boosted performance can be attributed to improved charge transfer, which has been investigated using steady state and operando approaches. This work elucidates the pivotal importance of the crystallinity of conjugated polymer semiconductors for PEC water splitting and other advanced photocatalytic applications.

4.
Chem Rev ; 121(21): 13051-13085, 2021 11 10.
Article in English | MEDLINE | ID: mdl-34378934

ABSTRACT

Merging hydrogen (H2) evolution with oxidative organic synthesis in a semiconductor-mediated photoredox reaction is extremely attractive because the clean H2 fuel and high-value chemicals can be coproduced under mild conditions using light as the sole energy input. Following this dual-functional photocatalytic strategy, a dreamlike reaction pathway for constructing C-C/C-X (X = C, N, O, S) bonds from abundant and readily available X-H bond-containing compounds with concomitant release of H2 can be readily fulfilled without the need of external chemical reagents, thus offering a green and fascinating organic synthetic strategy. In this review, we begin by presenting a concise overview on the general background of traditional photocatalytic H2 production and then focus on the fundamental principles of cooperative photoredox coupling of selective organic synthesis and H2 production by simultaneous utilization of photoexcited electrons and holes over semiconductor-based catalysts to meet the economic and sustainability goal. Thereafter, we put dedicated emphasis on recent key progress of cooperative photoredox coupling of H2 production and various selective organic transformations, including selective alcohol oxidation, selective methane conversion, amines oxidative coupling, oxidative cross-coupling, cyclic alkanes dehydrogenation, reforming of lignocellulosic biomass, and so on. Finally, the remaining challenges and future perspectives in this flourishing area have been critically discussed. It is anticipated that this review will provide enlightening guidance on the rational design of such dual-functional photoredox reaction system, thereby stimulating the development of economical and environmentally benign solar fuel generation and organic synthesis of value-added fine chemicals.


Subject(s)
Hydrogen , Semiconductors , Catalysis , Chemistry Techniques, Synthetic , Hydrogen/chemistry , Oxidative Stress
5.
Nat Commun ; 11(1): 5181, 2020 Oct 14.
Article in English | MEDLINE | ID: mdl-33057004

ABSTRACT

The performance of transition metal hydroxides, as cocatalysts for CO2 photoreduction, is significantly limited by their inherent weaknesses of poor conductivity and stacked structure. Herein, we report the rational assembly of a series of transition metal hydroxides on graphene to act as a cocatalyst ensemble for efficient CO2 photoreduction. In particular, with the Ru-dye as visible light photosensitizer, hierarchical Ni(OH)2 nanosheet arrays-graphene (Ni(OH)2-GR) composites exhibit superior photoactivity and selectivity, which remarkably surpass other counterparts and most of analogous hybrid photocatalyst system. The origin of such superior performance of Ni(OH)2-GR is attributed to its appropriate synergy on the enhanced adsorption of CO2, increased active sites for CO2 reduction and improved charge carriers separation/transfer. This work is anticipated to spur rationally designing efficient earth-abundant transition metal hydroxides-based cocatalysts on graphene and other two-dimension platforms for artificial reduction of CO2 to solar chemicals and fuels.

6.
Angew Chem Int Ed Engl ; 56(36): 10905-10910, 2017 08 28.
Article in English | MEDLINE | ID: mdl-28710859

ABSTRACT

Aerogel structures have attracted increasing research interest in energy storage and conversion owing to their unique structural features, and a variety of materials have been engineered into aerogels, including carbon-based materials, metal oxides, linear polymers and even metal chalcogenides. However, manufacture of aerogels from nitride-based materials, particularly the emerging light-weight carbon nitride (CN) semiconductors is rarely reported. Here, we develop a facile method based on self-assembly to produce self-supported CN aerogels, without using any cross-linking agents. The combination of large surface area, incorporated functional groups and three-dimensional (3D) network structure, endows the resulting freestanding aerogels with high photocatalytic activity for hydrogen evolution and H2 O2 production under visible light irradiation. This work presents a simple colloid chemistry strategy to construct 3D CN aerogel networks that shows great potential for solar-to-chemical energy conversion by artificial photosynthesis.

7.
Dalton Trans ; 46(32): 10678-10684, 2017 Aug 15.
Article in English | MEDLINE | ID: mdl-28492630

ABSTRACT

The development of highly active, cost-effective, environmentally friendly and stable g-C3N4 based photocatalysts for H2 evolution is one of the most anticipated potential pathways for future hydrogen utilization. Herein, a facile gaseous bubble template approach was designed to prepare large-scale thin g-C3N4 nanosheets (g-C3N4 NSs) using melamine and ammonium sulphate as the bubble template. Through distinctive structural improvements for a large bandgap, excellent electron mobility, prolonged lifetime of the photogenerated charge carriers and a high specific surface area with highly accessible potential reaction sites, the as-synthesized g-C3N4 NSs demonstrated a high photocatalytic hydrogen evolution rate of 9871 µmol h-1 g-1 and efficient photocatalytic degradation of Rhodamine B (RhB) and phenol under simulated solar light irradiation.

8.
Small ; 11(16): 1920-9, 2015 Apr 24.
Article in English | MEDLINE | ID: mdl-25511009

ABSTRACT

A brown mesoporous TiO2-x /MCF composite with a high fluorine dopant concentration (8.01 at%) is synthesized by a vacuum activation method. It exhibits an excellent solar absorption and a record-breaking quantum yield (Φ = 46%) and a high photon-hydrogen energy conversion efficiency (η = 34%,) for solar photocatalytic H2 production, which are all higher than that of the black hydrogen-doped TiO2 (Φ = 35%, η = 24%). The MCFs serve to improve the adsorption of F atoms onto the TiO2 /MCF composite surface, which after the formation of oxygen vacancies by vacuum activation, facilitate the abundant substitution of these vacancies with F atoms. The decrease of recombination sites induced by high-concentration F doping and the synergistic effect between lattice Ti(3+)-F and surface Ti(3+)-F are responsible for the enhanced lifetime of electrons, the observed excellent absorption of solar light, and the photocatalytic production of H2 for these catalysts. The as-prepared F-doped composite is an ideal solar light-driven photocatalyst with great potential for applications ranging from the remediation of environmental pollution to the harnessing of solar energy for H2 production.

10.
Phys Chem Chem Phys ; 15(32): 13243-53, 2013 Aug 28.
Article in English | MEDLINE | ID: mdl-23760469

ABSTRACT

The present perspective describes recent advances in visible-light-responsive photocatalysts intended to develop novel and efficient solar energy conversion technologies, including water splitting and photofuel cells. Water splitting is recognized as one of the most promising techniques to convert solar energy as a clean and abundant energy resource into chemical energy in the form of hydrogen. In recent years, increasing concern is directed to not only the development of new photocatalytic materials but also the importance of technologies to produce hydrogen and oxygen separately. Photofuel cells can convert solar energy into electrical energy by decomposing bio-related compounds and livestock waste as fuels. The advances of photocatalysts enabling these solar energy conversion technologies have been going on since the discovery of semiconducting titanium dioxide materials and have extended to organic-inorganic hybrid materials, such as metal-organic frameworks and porous coordination polymers (MOF/PCP).


Subject(s)
Electric Power Supplies , Hydrogen/chemistry , Hydrogen/radiation effects , Organometallic Compounds/chemistry , Photochemical Processes/radiation effects , Semiconductors , Solar Energy , Titanium/chemistry , Catalysis/radiation effects , Light , Particle Size , Polymers/chemistry , Porosity , Surface Properties
11.
J Hazard Mater ; 237-238: 133-9, 2012 Oct 30.
Article in English | MEDLINE | ID: mdl-22947182

ABSTRACT

Efficient removal of toluene or benzene molecules thinly diffused in gas phase was achieved by using TiO(2)/Y-zeolite hybrid photocatalysts. TiO(2) of 10 wt% hybridized with a hydrophobic USY zeolite showed higher photocatalytic reactivity as compared to TiO(2) hybridized with hydrophilic H-Y or Na-Y zeolites. This phenomenon can be explained by the fact that the hydrophobic USY zeolite efficiently adsorbs the organic compounds and smoothly supplies them onto the TiO(2) photocatalyst surface. However, the toluene or benzene molecules, which are strongly trapped on the hydrophilic H(+) or Na(+) sites of zeolite, cannot diffuse onto the TiO(2) surfaces, resulting in lower photocatalytic reactivity. Although the adsorption capacity of the pure TiO(2) sample rapidly deteriorated, the TiO(2)/Y-zeolite hybrid system maintained a high adsorption efficiency to remove such aromatic compounds for a long period.


Subject(s)
Air Pollutants/chemistry , Benzene/chemistry , Metal Nanoparticles/chemistry , Titanium/chemistry , Toluene/chemistry , Yttrium/chemistry , Adsorption , Air Pollutants/radiation effects , Benzene/radiation effects , Catalysis , Metal Nanoparticles/radiation effects , Photochemical Processes , Titanium/radiation effects , Toluene/radiation effects , Ultraviolet Rays , Zeolites/chemistry , Zeolites/radiation effects
12.
J Biomed Mater Res B Appl Biomater ; 100(8): 2279-87, 2012 Nov.
Article in English | MEDLINE | ID: mdl-22987777

ABSTRACT

The time-dependent degradation of titanium bioactivity (i.e., the biological aging of titanium) has been reported in previous studies. This phenomenon is caused by the loss of hydrophilicity and the inevitable occurrence of progressive contamination of titanium surfaces by hydrocarbons. In this study, we tested the hypothesis that gamma ray treatment, owing to its high energy to decompose and remove organic contaminants, enhances the bioactivity and osteoconductivity of titanium. Titanium disks were acid-etched and stored for 4 weeks. Rat bone marrow-derived osteoblasts (BMOs) were cultured on titanium disks with or without gamma ray treatment (30 kGy) immediately before experiments. The cell density at day 2 increased by 50% on gamma-treated surfaces, which reflected the 25% higher rate of cell proliferation. Osteoblasts on gamma-treated surfaces showed 30% higher alkaline phosphatase activity at day 5 and 60% higher calcium deposition at day 20. The strength of in vivo bone-implant integration increased by 40% at the early healing stage of week 2 for gamma-treated implants. Gamma ray-treated surfaces regained hydrophilicity and showed a lower percentage of carbon (35%) as opposed to 48% on untreated aged surfaces. The data indicated that gamma ray pretreatment of titanium substantially enhances its bioactivity and osteoconductivity, in association with the significant reduction in surface carbon and the recovery of hydrophilicity. The results suggest that gamma ray treatment could be an effective surface enhancement technology to overcome biological aging of titanium and improve the biological properties of titanium implants.


Subject(s)
Bone Marrow Cells/metabolism , Gamma Rays , Materials Testing , Osseointegration , Osteoblasts/metabolism , Titanium/chemistry , Alkaline Phosphatase/biosynthesis , Animals , Bone Marrow Cells/cytology , Calcium/metabolism , Cell Proliferation , Cells, Cultured , Hydrophobic and Hydrophilic Interactions , Male , Osteoblasts/cytology , Prostheses and Implants , Rats , Rats, Sprague-Dawley , Surface Properties
13.
J Nanosci Nanotechnol ; 10(1): 314-8, 2010 Jan.
Article in English | MEDLINE | ID: mdl-20352853

ABSTRACT

Simple chemical vapor deposition (CVD) of M(CO), (M = Cr, Mo, W) onto phenylene- and biphenylene-bridged organosilica mesoporous materials (HMM-ph, HMM-biph) led to the efficient formation of C6H4M(CO)3 and (C6H4)2M(CO)3 complexes, respectively, which are directly fixed and incorporated within the framework structure of HMM-ph and HMM-biph having molecular-scale periodicity in the pore walls. FT-IR investigations revealed that thus formed C6H4M(CO), or (C6H4)2M(CO)3 complexes are thermally stable even under thermovacuum treatment at 473 K.

14.
Biomaterials ; 30(29): 5352-63, 2009 Oct.
Article in English | MEDLINE | ID: mdl-19595450

ABSTRACT

The shelf life of implantable materials has rarely been addressed. We determined whether osteoconductivity of titanium is stable over time. Rat bone marrow-derived osteoblasts were cultured on new titanium disks (immediately after acid-etching), 3-day-old (stored after acid-etching for 3 days in dark ambient conditions), 2-week-old, and 4-week-old disks. Protein adsorption capacity, and osteoblast migration, attachment, spread, proliferation and mineralization decreased substantially on old titanium surfaces in an age-dependent manner. When the 4-week-old implants were placed into rat femurs, the biomechanical strength of bone-titanium integration was less than half that for newly processed implants at the early healing stage. More than 90% of the new implant surface was covered by newly generated bone compared to 58% for 4-week-old implants. This time-dependent biological degradation was also found for machined and sandblasted titanium surfaces and was associated with progressive accumulation of hydrocarbon on titanium surfaces. The new surface could attract osteoblasts even under a protein-free condition, but its high bioactivity was abrogated by masking the surface with anions. These results uncover an aging-like time-dependent biological degradation of titanium surfaces from bioactive to bioinert. We also suggest possible underlying mechanisms for this biological degradation that provide new insights into how we could inadvertently lose, and conversely, maximize the osteoconductivity of titanium-based implant materials.


Subject(s)
Biocompatible Materials/chemistry , Osteoblasts/cytology , Osteoblasts/physiology , Osteogenesis/physiology , Prostheses and Implants , Titanium/chemistry , Animals , Cell Proliferation , Cell Survival , Cells, Cultured , Male , Materials Testing , Rats , Rats, Sprague-Dawley , Surface Properties , Time Factors
15.
Biomaterials ; 30(7): 1273-80, 2009 Mar.
Article in English | MEDLINE | ID: mdl-19095298

ABSTRACT

Unlike titanium, surface roughening of zirconia for enhanced bone integration has been technically challenging. The photochemical reaction of semiconductor oxides, e.g., titanium dioxide, has earned considerable and broad interest in environmental and clean energy sciences. This study determined whether ultraviolet (UV) light treatment of zirconia enhances its bioactivity on osteoblasts. Machined zirconia disks were treated with UV light for various time periods up to 48 h. UV light treatment for 48 h increased the rates of attachment, spread, and proliferation of rat bone marrow-derived osteoblasts. Alkaline phosphatase-positive and mineralized nodule areas doubled on UV light-treated zirconia. The expression of osteoblastic genes, such as osteopontin and osteocalcin, was not modulated by UV light treatment. X-ray diffraction and X-ray photoelectron spectroscopy analyses showed that zirconia disks consisted of monoclinic and tetragonal phases of ZrO(2) and Y(2)O(3) having a wide light absorption band of 200-400 nm with its peak at <250 nm. UV light treatment transformed the zirconia surface from hydrophobic to hydrophilic status and reduced the atomic percentage of surface carbon in a UV light dose-dependent manner. These results suggest that UV treatment of yttrium-containing partially stabilized zirconia enhances its bioactivity on osteoblasts, in terms of their attachment, proliferation, and eventually mineralization. This biofunctionalization was associated with UV light-catalytic hydrophilic conversion of zirconia surfaces and progressive removal of hydrocarbons.


Subject(s)
Dental Materials/radiation effects , Osteoblasts/physiology , Zirconium/radiation effects , Animals , Biocompatible Materials/metabolism , Biocompatible Materials/radiation effects , Biomarkers/metabolism , Bone Marrow Cells/cytology , Bone Marrow Cells/physiology , Cell Proliferation , Cells, Cultured , Dental Materials/metabolism , Male , Materials Testing , Osteoblasts/cytology , Rats , Rats, Sprague-Dawley , Surface Properties , Ultraviolet Rays , Zirconium/metabolism
16.
Biomaterials ; 30(6): 1015-25, 2009 Feb.
Article in English | MEDLINE | ID: mdl-19042016

ABSTRACT

Titanium implants are used as a reconstructive anchor in orthopedic and dental diseases and problems. Recently, ultraviolet (UV) light-induced photocatalytic activity of titanium has earned considerable and broad interest in environmental and clean-energy sciences. This study determines whether UV treatment of titanium enhances its osteoconductive capacity. Machined and acid-etched titanium samples were treated with UV for various time periods up to 48h. For both surfaces, UV treatment increased the rates of attachment, spread, proliferation and differentiation of rat bone marrow-derived osteoblasts, as well as the capacity of protein adsorption, by up to threefold. In vivo histomorphometry in the rat model revealed that new bone formation occurred extensively on UV-treated implants with virtually no intervention by soft tissue, maximizing bone-implant contact up to nearly 100% at week 4 of healing. An implant biomechanical test revealed that UV treatment accelerated the establishment of implant fixation 4 times. The rates of protein adsorption and cell attachment strongly correlated with the UV dose-responsive atomic percentage of carbon on TiO2, but not with the hydrophilic status. The data indicated that UV light pretreatment of titanium substantially enhances its osteoconductive capacity, in association with UV-catalytic progressive removal of hydrocarbons from the TiO2 surface, suggesting a photofunctionalization of titanium enabling more rapid and complete establishment of bone-titanium integration.


Subject(s)
Osseointegration/drug effects , Osseointegration/radiation effects , Titanium/pharmacology , Titanium/radiation effects , Ultraviolet Rays , Adsorption/drug effects , Adsorption/radiation effects , Animals , Carbon , Cattle , Cell Adhesion/drug effects , Cell Adhesion/radiation effects , Cell Movement/drug effects , Cell Movement/radiation effects , Cell Proliferation/drug effects , Cell Proliferation/radiation effects , Dose-Response Relationship, Radiation , Fibronectins/metabolism , Implants, Experimental , Male , Osteoblasts/cytology , Osteoblasts/drug effects , Osteoblasts/radiation effects , Osteogenesis/drug effects , Osteogenesis/radiation effects , Phenotype , Rats , Rats, Sprague-Dawley , Serum Albumin, Bovine/metabolism
17.
J Colloid Interface Sci ; 323(1): 182-6, 2008 Jul 01.
Article in English | MEDLINE | ID: mdl-18448112

ABSTRACT

Ag@TiO2 core-shell-type nanophotocatalysts have been prepared using a simple and convenient method. The products were characterized by TEM, XRD, and UV-vis spectra. To make the catalysts achieve the highest photocatalytic activity under UV light illumination, the Ag content of Ag@TiO2 was optimized. The results showed that Ag@TiO2-doped Fe3+ extend their absorption into the visible region. Among the Fe3+-doped samples, Ag@Fe-TiO2 with low Ag content showed higher photocatalytic activity under visible light illumination. An excessive added amount of Ag would reduce Fe3+ to Fe2+ and make them difficult to be incorporated into the lattice of titania. From the experiments, we found that Fe3+ ions could stabilize the Ag@TiO2 colloid by holding back the aggregation of the core-shell nanoparticles.

18.
J Colloid Interface Sci ; 315(1): 382-8, 2007 Nov 01.
Article in English | MEDLINE | ID: mdl-17658542

ABSTRACT

The Ce-TiO2 catalysts were prepared by controlled hydrolysis of Ti(OC(4)H(9))(4) with water generated "in situ" via an esterification reaction between acetic acid and ethanol, followed by hydrothermal treatment. The samples were characterized by X-ray diffraction (XRD), UV-vis diffuse reflectance spectroscopy (DRS), scanning electron microscopy (SEM), atomic absorption flame emission spectroscopy (AAS), and nitrogen adsorption-desorption methods. Both of undoped TiO2 and Ce-TiO2 samples exclusively consist of primary anatase crystallites, which further form spherical aggregates with diameters ranging from 100 to 500 nm. The photocatalytic activity of Ce-TiO2 was investigated for the photocatalytic degradation of Rhodamine B (RB) aqueous solution both under UV and visible light irradiation. Doping of Ce(4+) effectively improves the photocatalytic activity under both UV light irradiation and visible light irradiation with an optimal doping concentration of 0.2 and 0.4%, respectively. The photocatalytic mechanisms of Ce-TiO2 catalysts were tentatively discussed.

19.
J Colloid Interface Sci ; 311(2): 497-501, 2007 Jul 15.
Article in English | MEDLINE | ID: mdl-17416386

ABSTRACT

An ion-implantation method was used to prepare V-ion-implanted P25 TiO2 photocatalysts. Their photocatalytic activity for the degradation of formic acid under visible light irradiation (lambda>450 nm) was investigated. Upon implantation of V ions into the lattice of P25 TiO2, the photoactivity was remarkably enhanced. HRTEM images showed that the implanted V ions existed in the form of VO2(T) in the lattice of P25 TiO2. The intensity of photoluminescence (PL) spectra of V-ion-implanted P25 TiO2 decreased with the increase of the amount of implanted V ions, indicating the decrease of electron-hole pair recombination. It was also observed that the lower the PL intensity of V-ion-implanted P25 TiO2, the higher the photoactivity.

20.
J Phys Chem B ; 110(50): 25266-72, 2006 Dec 21.
Article in English | MEDLINE | ID: mdl-17165971

ABSTRACT

Nitrogen-substituted TiO2 (N-TiO2) thin film photocatalysts have been prepared by a radio frequency magnetron sputtering (RF-MS) deposition method using a N2/Ar mixture sputtering gas. The effect of the concentration of substituted nitrogen on the characteristics of the N-TiO2 thin films was investigated by UV-vis absorption spectroscopy, X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), and scanning electron microscopy (SEM) analyses. The absorption band of the N-TiO2 thin film was found to shift smoothly to visible light regions up to 550 nm, its extent depending on the concentration of nitrogen substituted within the TiO2 lattice in a range of 2.0-16.5%. The N-TiO2 thin film photocatalyst with a nitrogen concentration of 6.0% exhibited the highest reactivity for the photocatalytic oxidation of 2-propanol diluted in water even under visible (lambda > or = 450 nm) or solar light irradiation. Moreover, N-TiO2 thin film photocatalysts prepared on conducting glass electrodes showed anodic photocurrents attributed to the photooxidation of water under visible light, its extent depending on wavelengths up to 550 nm. The absorbed photon to current conversion efficiencies reached 25.2% and 22.4% under UV (lambda = 360 nm) and visible light (lambda = 420 nm), respectively. UV-vis and photoelectrochemical investigations also confirmed that these thin films remain thermodynamically and mechanically stable even under heat treatment at 673 K. In addition, XPS and XRD studies revealed that a significantly high substitution of the lattice O atoms of the TiO2 with the N atoms plays a crucial role in the band gap narrowing of the TiO2 thin films, enabling them to absorb and operate under visible light irradiation as a highly reactive, effective photocatalyst.

SELECTION OF CITATIONS
SEARCH DETAIL
...