Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Life Sci ; 325: 121569, 2023 Jul 15.
Article in English | MEDLINE | ID: mdl-36907328

ABSTRACT

AIMS: Without any doubt, vaccination was the best choice for Coronavirus disease 2019 (COVID-19) pandemic control. According to the American Society of Clinical Oncology (ASCO) and European Society for Medical Oncology (ESMO), people with cancer or a history of cancer have a higher risk of dying from Covid-19 than ordinary people; hence, they should be considered a high-priority group for vaccination. On the other hand, the effect of the Covid-19 vaccination on cancer is not transparent enough. This study is one of the first in vivo studies that try to show the impact of Sinopharm (S) and AstraZeneca (A) vaccines on breast cancer, the most common cancer among women worldwide. MATERIALS AND METHODS: Vaccination was performed with one and two doses of Sinopharm (S1/S2) or AstraZeneca (A1/A2) on the 4T1 triple-negative breast cancer (TNBC) mice model. The tumor size and body weight of mice were monitored every two days. After one month, mice were euthanized, and the existence of Tumor-infiltrating lymphocytes (TILs) and expression of the important markers in the tumor site was assessed. Metastasis in the vital organs was also investigated. KEY FINDINGS: Strikingly, all of the vaccinated mice showed a decrease in tumor size and this decrease was highest after two vaccinations. Moreover, we observed more TILs in the tumor after vaccination. Vaccinated mice demonstrated a decrease in the expression of tumor markers (VEGF, Ki-67, MMP-2/9), CD4/CD8 ratio, and metastasis to the vital organs. SIGNIFICANCE: Our results strongly suggest that COVID-19 vaccinations decrease tumor growth and metastasis.


Subject(s)
COVID-19 , Neoplasms , Humans , Female , Animals , Mice , COVID-19 Vaccines , COVID-19/prevention & control , CD4-CD8 Ratio , Biomarkers, Tumor , Vaccination
2.
J Proteome Res ; 21(11): 2566-2585, 2022 11 04.
Article in English | MEDLINE | ID: mdl-36173113

ABSTRACT

Safranal, as an aroma in saffron, is one of the cytotoxic compounds in saffron that causes cell death in triple-negative breast cancer cells. Our recent research reported the anti-cancer effects of safranal, which further demonstrated its impact on protein translation, mitochondrial dysfunction, and DNA fragmentation. To better understand the underlying mechanisms, we identified acetylated and phosphorylated peptides in safranal-treated cancer cells. We conducted a comprehensive phosphoproteomics and acetylomics analysis of safranal-treated MDA-MB-231 cells by using a combination of TMT labeling and enrichment methods including titanium dioxide and immunoprecipitation. We provide a wide range of phosphoproteome regulation in different signaling pathways that are disrupted by safranal treatment. Safranal influences the phosphorylation level on proteins involved in DNA replication and repair, translation, and EGFR activation/accumulation, which can lead the cells into apoptosis. Safranal causes DNA damage which is followed by the activation of cell cycle checkpoints for DNA repair. Over time, checkpoints and DNA repair are inhibited and cells are under a mitotic catastrophe. Moreover, safranal prevents repair by the hypo-acetylation of H4 and facilitates the transcription of proapoptotic genes by hyper-acetylation of H3, which push the cells to the brink of death.


Subject(s)
Triple Negative Breast Neoplasms , Humans , Triple Negative Breast Neoplasms/drug therapy , Cyclohexenes/pharmacology , Terpenes/pharmacology , Apoptosis
3.
Arch Biochem Biophys ; 728: 109357, 2022 10 15.
Article in English | MEDLINE | ID: mdl-35917882

ABSTRACT

Free radicals are highly reactive molecules with short lifetime which are now well accepted to act as regulators for different signaling pathways and hence can affect various cellular processes. Furthermore, they play pivotal role in different physiological/pathophysiological processes including homeostasis, metabolism, immunity, proliferation, differentiation, and cancer. Meanwhile, free radicals play a positive role in pathogen resistance that any imbalances in their productions/regulation could be harmful to cell macromolecules such as proteins, lipids, and nucleic acids and finally cells' fate, which may be results in different diseases. Some modalities, especially in cancer therapy, are based on ROS elevation/decreasing. Based on the inevitable importance of ROS various detection methods have been developed. These methods should have fundamental criteria including cell-permeability and physiological pH compatibility. In this review first we will bring up about different free radicals, their role in diseases, and underlying signaling pathways; after that various detection methods with their pros and cons will be discussed.


Subject(s)
Neoplasms , Oxidative Stress , Free Radicals , Humans , Neptune , Reactive Oxygen Species , Signal Transduction
4.
Sci Rep ; 12(1): 14225, 2022 08 20.
Article in English | MEDLINE | ID: mdl-35987807

ABSTRACT

Extremely low-frequency electromagnetic field (ELF-EMF) induces biological effects on different cells through various signaling pathways. To study the impact of the ELF-EMF on living cells under an optimal physiological condition, we have designed and constructed a novel system that eliminates several limitations of other ELF-EMF systems. Apoptosis and cell number were assessed by flow cytometry and the Trypan Blue dye exclusion method, respectively. In vitro cell survival was evaluated by colony formation assay. The distribution of cells in the cell cycle, intracellular ROS level, and autophagy were analyzed by flow cytometer. Suspended cells differentiation was assessed by phagocytosis of latex particles and NBT reduction assay. Our results showed that response to the exposure to ELF-EMF is specific and depends on the biological state of the cell. For DU145, HUVEC, and K562 cell lines the optimum results were obtained at the frequency of 0.01 Hz, while for MDA-MB-231, the optimum response was obtained at 1 Hz. Long-term exposure to ELF-EMF in adherent cells effectively inhibited proliferation by arresting the cell population at the cell cycle G2/M phase and increased intracellular ROS level, leading to morphological changes and cell death. The K562 cells exposed to the ELF-EMF differentiate via induction of autophagy and decreasing the cell number. Our novel ELF-EMF instrument could change morphological and cell behaviors, including proliferation, differentiation, and cell death.


Subject(s)
Electromagnetic Fields , Neoplasms , Cell Differentiation/physiology , Cell Survival , Humans , K562 Cells , Reactive Oxygen Species/metabolism
5.
Genetica ; 150(5): 289-297, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35913522

ABSTRACT

Although predicting the effects of variants near intron-exon boundaries is relatively straightforward, predicting the functional Exon Splicing Enhancers (ESEs) and the possible effects of variants within ESEs remains a challenge. Considering the essential role of CYP2D6/CYP2C19 genes in drug metabolism, we attempted to identify variants that are most likely to disrupt splicing through their effect on these ESEs. ESEs were predicted in these two genes using ESEfinder 3.0, incorporating a series of filters (increased threshold and evolutionary conservation). Finally, reported mutations were evaluated for their potential to disrupt splicing by affecting these ESEs. Initially, 169 and 243 ESEs were predicted for CYP2C19/CYP2D6, respectively. However, applying the filters, the number of predicted ESEs was reduced to 26 and 19 in CYP2C19/CYP2D6, respectively. Comparing prioritized predicted ESEs with known sequence variants in CYP2C19/CYP2D6 genes highlights 18 variations within conserved ESEs for each gene. We found good agreement in cases where such predictions could be compared to experimental evidence. In total, we prioritized a subset of mutational changes in CYP2C19/CYP2D6 genes that may affect the function of these genes and lead to altered drug responses. Clinical studies and functional analysis for investigating detailed functional consequences of the mentioned mutations and their phenotypic outcomes is mostly recommended.


Subject(s)
Alternative Splicing , Cytochrome P-450 CYP2D6 , Cytochrome P-450 CYP2C19/genetics , Cytochrome P-450 CYP2D6/genetics , Exons , Polymorphism, Genetic
6.
J Proteomics ; 259: 104539, 2022 05 15.
Article in English | MEDLINE | ID: mdl-35240313

ABSTRACT

Triple-negative breast cancer (TNBC) is an aggressive subtype of breast cancer with no efficient treatment. Researchers have indicated the importance of quantitative approaches on proteome and different post-translation modifications studies both in diagnosis and treatment purposes. Sialic acid-containing glycopeptides (the sialiome) is one of these modifications which can be used as a tool in cancer diagnosis or therapeutic strategies since the sialylation is strongly associated with cancer migration and metastasis. Based on our study, safranal, which is a non-toxic compound in orally intakes, exhibits a significant cytotoxic effect on MDA-MB-231 in comparison to normal cells. We conducted a comprehensive proteomics and sialiomics analysis of safranal treated MDA-MB-231 cells by using a combination of TMT labeling and titanium dioxide enrichment of sialylated N-linked glycopeptides to investigate the underlying molecular mechanism behind safranal-induced apoptosis. Safranal has main effect on the inhibition of metabolism and mitochondrial dysfunction. It regulates proteins considered as activator of DNA fragmentation and apoptosis mediators. Moreover, safranal regulates sialylation of glycoproteins involving in cellular adhesion, migration and survival. It suppresses cell survival and metastasis through the alteration of the sialylation level on important signaling receptors. These results highlight the impact of safranal as a potent anticancer compound on TNBCs which also can be strongly used in daily diets. SIGNIFICANCE: In first step, we evaluated the cell viability of MDA-MB-231 cell lines against the purified saffron components (total crocin, picrocrocin, crocin I and safranal). Safranal was the only compound demonstrated the anti-proliferation effect. In order to obtain an understanding of safranal cytotoxic effect on MDA-MB-231, we designed the three set of treated cell lines in 30 min, 12 h and 24 h time-points in three replicates and a combination of TMT-based labeling quantitative proteomics and titanium dioxide (TiO2)-based enrichment of sialylated N-linked glycopeptides for sialiomics analysis as a strategy to follow the more detailed mechanisms of safranal effect. The results of bioinformatics analysis revealed the multifunction role of safranal on MDA-MB-231 cell lines. Safranal mainly dysregulates mitochondrial function, inhibits metabolism and starts initial signaling of apoptosis which lead to DNA fragmentation. Moreover, safranal caused the majority of down-regulation in sialylation profile in all time-points. Safranal also declines the cell survival, adhesion and migration by dysregulation of the sialylation level in important proteins including integrins, tumor necrosis factor receptor and cell adhesion molecules (CAMs). The results provide a set of therapeutic targets for triple negative breast cancer which can help designing of effective anticancer drugs specially in targeted therapies.


Subject(s)
Triple Negative Breast Neoplasms , Apoptosis , Cell Line, Tumor , Cell Proliferation , Cyclohexenes , Glycopeptides , Humans , Proteomics , Terpenes , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/metabolism
7.
Int J Med Mushrooms ; 22(11): 1079-1088, 2020.
Article in English | MEDLINE | ID: mdl-33426839

ABSTRACT

Information on the biosafety of tiger sawgill mushroom, Lentinus tigrinus, is limited and controversial. In the present study, the toxicity of a native L. tigrinus strain was evaluated in both cell cultures and mice. In addition to proximate analysis, the amino acid composition and the substrate-dependent uptake of elements were also evaluated. The mushroom (dry weight) had 7.53 ± 0.11% ash, 4.23 ± 0.23% lipid, 13.4 ± 0.04% fiber, 74.84 ± 0.38% total carbohydrate, and 4.16 ± 0.08 (mg GAEs/g) total phenol. Lysine was found at the highest amount among the L-amino acids determined in the L. tigrinus soluble protein. Comparison of the elemental profile of L. tigrinus with that of the substrate demonstrated a great capacity for absorption of K, P, S, and Mg elements, while the Na uptake was low. Neither the substrate nor the mushroom contained toxic elements beyond the standards of the joint FAO/WHO. The viability of normal human and mouse-derived cells was not influenced by the extract up to 250 µg/mL, where 70% of cancerous PC3 and MCF-7 cells were killed. Selectivity index analysis suggested that the L. tigrinus extract was selective only against MCF-7 cells. The extract also did not affect mice treated orally or via i.p. injection, while i.v. injection caused some mortality in mice with an LD50 of 47.19 mg/mL. In conclusion, L. tigrinus may be considered a source of macronutrients and micronutrients with a selective anticancer activity, while it is much less likely to have detrimental effects on humans at low serving levels.


Subject(s)
Lentinula/chemistry , Plant Extracts/chemistry , Amino Acids/analysis , Animals , Cell Line , Cell Survival/drug effects , Dietary Fiber/analysis , Humans , Iran , Mice , Nutrition Assessment , Phenol/analysis , Plant Extracts/toxicity
SELECTION OF CITATIONS
SEARCH DETAIL
...