Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
Add more filters










Publication year range
2.
Article in English | MEDLINE | ID: mdl-38509420

ABSTRACT

With the advent of nanotechnology, the treatment of cancer is changing from a conventional to a nanoparticle-based approach. Thus, developing nanoparticles to treat cancer is an area of immense importance. We prepared silver nanoparticles (AgNPs) from methanolic extract of Alpinia galanga rhizome and characterized them by UV-Vis spectrophotometry, Fourier transform Infrared (FTIR) spectroscopy, Zetasizer, and Transmission electron Microscopy (TEM). UV-Vis spectrophotometry absorption spectrum showed surface plasmon between 400 and 480 nm. FTIR spectrum analysis implies that various phytochemicals/secondary metabolites are involved in the reduction, caping, and stabilization of AgNPs. The Zetasier result suggests that the particles formed are small in size with a low polydispersity index (PDI), suggesting a narrow range of particle distribution. The TEM image suggests that the particles formed are mostly of spherical morphology with nearly 20-25 nm. Further, the selected area electron diffraction (SAED) image showed five electron diffraction rings, suggesting the polycrystalline nature of the particles. The nanoparticles showed high anticancer efficacy against cervical cancer (SiHa) cell lines. The nanostructures showed dose-dependent inhibition with 40% killing observed at 6.25 µg/mL dose. The study showed an eco-friendly and cost-effective approach to the synthesis of AgNPs and provided insight into the development of antioxidant and anticancer agents.

3.
Transl Oncol ; 43: 101920, 2024 May.
Article in English | MEDLINE | ID: mdl-38394865

ABSTRACT

BACKGROUND: The "one drug-one target" paradigm has various limitations affecting drug efficacy, such as resistance profiles and adverse effects. Combinational therapies help reduce unexpected off-target effects and accelerate therapeutic efficacy. Sorafenib- an FDA-approved drug for liver cancer, has multiple limitations. Therefore, it is recommended to identify an agent that increases its effectiveness and reduces toxicity. In this regard, Apigenin, a plant flavone, would be an excellent option to explore. METHODS: We used in silico, in vitro, and animal models to explore our hypothesis. For the in vitro study, HepG2 and Huh7 cells were exposed to Apigenin (12-96 µM) and Sorafenib (1-10 µM). For the in vivo study, Diethylnitrosamine (DEN) (25 mg/kg) induced tumor-bearing animals were given Apigenin (50 mg/kg) or Sorafenib (10 mg/kg) alone and combined. Apigenin's bioavailability was checked by UPLC. Tumor nodules were studied macroscopically and by Scanning Electron Microscopy (SEM). Biochemical analysis, histopathology, immunohistochemistry, and qRT-PCR were done. RESULTS: The results revealed Apigenin's good bioavailability. In silico study showed binding affinity of both chemicals with p53, NANOG, ß-Catenin, c-MYC, and TLR4. We consistently observed a better therapeutic efficacy in combination than alone treatment. Combination treatment showed i) better cytotoxicity, apoptosis induction, and cell cycle arrest of tumor cells, ii) tumor growth reduction, iii) increased expression of p53 and decreased Cd10, Nanog, ß-Catenin, c-Myc, Afp, and Tlr4. CONCLUSIONS: In conclusion, Apigenin could enhance the therapeutic efficacy of Sorafenib against liver cancer and may be a promising therapeutic approach for treating HCC. However, further research is imperative to gain more in-depth mechanistic insights.

4.
iScience ; 27(3): 109087, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38384846

ABSTRACT

The mechanisms explaining the variability in COVID-19 clinical manifestations (mild, moderate, and severe) are not fully understood. To identify key gene expression markers linked to disease severity, we employed an integrated approach, combining host-pathogen protein-protein interaction data and viral-induced host gene expression data. We analyzed an RNA-seq dataset from peripheral blood mononuclear cells across 12 projects representing the spectrum of disease severity. We identified genes showing differential expression across mild, moderate, and severe conditions. Enrichment analysis of the pathways in host proteins targeted by each of the SARS-CoV-2 proteins revealed a strong association with processes related to ribosomal biogenesis, translation, and translocation. Interestingly, most of these pathways and associated cellular machinery, including ribosomal biogenesis, ribosomal proteins, and translation, were upregulated in mild conditions but downregulated in severe cases. This suggests that COVID-19 exhibits a paradoxical host response, boosting host/viral translation in mild cases but slowing it in severe cases.

5.
Life Sci ; 322: 121647, 2023 Jun 01.
Article in English | MEDLINE | ID: mdl-37011877

ABSTRACT

AIMS: Cancer chemotherapeutic drugs can potentially cause several adverse effects that influence a patient's general well-being. Sorafenib, an approved drug used in clinics against multiple cancers whose overall efficacy suffered a serious setback due to various side effects, leading to its frequent discontinuation. Lupeol has recently been considered an important prospective therapeutic agent due to its low toxicity and enhanced biological efficacy. Hence, our study aimed to evaluate whether Lupeol can perturb the Sorafenib-induced toxicity. MAIN METHODS: To test our hypothesis, we studied DNA interaction, level of cytokines, LFT/RFT, oxidant/antioxidant status, and their influences on genetic, cellular, and histopathological changes using both in vitro and in vivo models. KEY FINDINGS: The Sorafenib-treated group showed a marked increase in reactive oxygen and nitrogen species (ROS/RNS), an increase in liver and renal function marker enzymes, serum cytokines (IL-6, TNF-α, IL-1ß) macromolecular damages (protein, lipid, and DNA), and a decrease in antioxidant enzymes (SOD, CAT, TrxR, GPx, GST). Moreover, Sorafenib-induced oxidative stress caused marked cytoarchitectural damage in the liver and kidney and increased p53 and BAX expression. Interestingly, combining Lupeol with Sorafenib improves all the examined toxic insults caused by Sorafenib. In conclusion, our findings suggest that Lupeol can be used in combination with Sorafenib to reduce ROS/RNS-induced macromolecule damage, which might result in hepato-renal toxicity. SIGNIFICANCE: This study presents the possible protective effect of Lupeol against Sorafenib-induced adverse effects by perturbing redox homeostasis imbalance and apoptosis leading to tissue damage. This study is a fascinating finding that warrants further in-depth preclinical and clinical studies.


Subject(s)
Antioxidants , Oxidative Stress , Mice , Animals , Antioxidants/pharmacology , Antioxidants/metabolism , Reactive Oxygen Species/metabolism , Sorafenib/pharmacology , Pentacyclic Triterpenes/pharmacology , Oxidation-Reduction , Apoptosis , Cytokines/metabolism
6.
Healthcare (Basel) ; 11(4)2023 Feb 14.
Article in English | MEDLINE | ID: mdl-36833098

ABSTRACT

BACKGROUND: Exercise therapy can potentially relieve symptoms and improve functional status of the knee osteoarthritis population. Despite the proved practical benefits, there is no standard, comprehensive physiotherapeutic protocol available targeting the physical and physiological impairment cluster associated with disease. Osteoarthritis is a whole joint disease, affecting joint cartilage, ligaments, menisci and joint associated muscles, from variable pathophysiological processes. Hence, there is a need to develop a physiotherapy protocol to address the multi-structural physical, physiological and functional impairments associated with the disease. OBJECTIVE: The objective of the present study is to evaluate the efficacy of designed, therapist supervised, patient education, progressive resistance exercises, passive stretching exercises, soft tissue manipulation, muscle energy technique, Maitland mobilization, aerobic exercise, and neuromuscular training physiotherapy protocol on pain, disability, balance, and physical functional performance in knee osteoarthritis patients. METHODOLOGY: The preliminary study was conducted on a (n = 60) sample of convenience. The samples were randomly allocated into two study groups, intervention, and control group. The control group was advised on a basic home program. On the other hand, the treatment of the intervention group was designed with a therapist supervised Physiotherapy Protocol. The outcome variables studied were the Visual Analogue Scale, Modified WOMAC Scale, Timed Up and Go Test, Functional Reach Test, 40 m Fast Paced Walk Test, Stair Climb Test, 30 s Chair Stand Test. RESULTS: The results of the study revealed a significant improvement among most of the studied outcome measures in the intervention group, hence the designed supervised physiotherapy protocol was found effective in relieving multiple physiological impairments associated with this whole joint disease.

7.
Front Cell Infect Microbiol ; 11: 690621, 2021.
Article in English | MEDLINE | ID: mdl-34568087

ABSTRACT

The coronavirus disease (COVID-19) is caused by a positive-stranded RNA virus called severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), belonging to the Coronaviridae family. This virus originated in Wuhan City, China, and became the cause of a multiwave pandemic that has killed 3.46 million people worldwide as of May 22, 2021. The havoc intensified with the emergence of SARS-CoV-2 variants (B.1.1.7; Alpha, B.1.351; Beta, P.1; Gamma, B.1.617; Delta, B.1.617.2; Delta-plus, B.1.525; Eta, and B.1.429; Epsilon etc.) due to mutations generated during replication. More variants may emerge to cause additional pandemic waves. The most promising approach for combating viruses and their emerging variants lies in prophylactic vaccines. Several vaccine candidates are being developed using various platforms, including nucleic acids, live attenuated virus, inactivated virus, viral vectors, and protein-based subunit vaccines. In this unprecedented time, 12 vaccines against SARS-CoV-2 have been phased in following WHO approval, 184 are in the preclinical stage, and 100 are in the clinical development process. Many of them are directed to elicit neutralizing antibodies against the viral spike protein (S) to inhibit viral entry through the ACE-2 receptor of host cells. Inactivated vaccines, to the contrary, provide a wide range of viral antigens for immune activation. Being an intracellular pathogen, the cytotoxic CD8+ T Cell (CTL) response remains crucial for all viruses, including SARS-CoV-2, and needs to be explored in detail. In this review, we try to describe and compare approved vaccines against SARS-CoV-2 that are currently being distributed either after phase III clinical trials or for emergency use. We discuss immune responses induced by various candidate vaccine formulations; their benefits, potential limitations, and effectiveness against variants; future challenges, such as antibody-dependent enhancement (ADE); and vaccine safety issues and their possible resolutions. Most of the current vaccines developed against SARS-CoV-2 are showing either promising or compromised efficacy against new variants. Multiple antigen-based vaccines (multivariant vaccines) should be developed on different platforms to tackle future variants. Alternatively, recombinant BCG, containing SARS-CoV-2 multiple antigens, as a live attenuated vaccine should be explored for long-term protection. Irrespective of their efficacy, all vaccines are efficient in providing protection from disease severity. We must insist on vaccine compliance for all age groups and work on vaccine hesitancy globally to achieve herd immunity and, eventually, to curb this pandemic.


Subject(s)
COVID-19 , Pandemics , COVID-19 Vaccines , Humans , Pandemics/prevention & control , SARS-CoV-2 , Vaccines, Inactivated
8.
Viruses ; 13(5)2021 04 21.
Article in English | MEDLINE | ID: mdl-33919410

ABSTRACT

To establish a productive infection in host cells, viruses often use one or multiple host membrane glycoproteins as their receptors. For Influenza A virus (IAV) such a glycoprotein receptor has not been described, to date. Here we show that IAV is using the host membrane glycoprotein CD66c as a receptor for entry into human epithelial lung cells. Neuraminidase (NA), a viral spike protein, binds to CD66c on the cell surface during IAV entry into the host cells. Lung cells overexpressing CD66c showed an increase in virus binding and subsequent entry into the cell. Upon comparison, CD66c demonstrated higher binding capacity than other membrane glycoproteins (EGFR and DC-SIGN) reported earlier to facilitate IAV entry into host cells. siRNA mediated knockdown of CD66c from lung cells inhibited virus binding on cell surface and entry into cells. Blocking CD66c by antibody on the cell surface resulted in decreased virus entry. We found that CD66c is a specific glycoprotein receptor for influenza A virus that did not affect entry of non-IAV RNA virus (Hepatitis C virus). Finally, IAV pre-incubated with recombinant CD66c protein when administered intranasally in mice showed decreased cytopathic effects in mice lungs. This publication is the first to report CD66c (Carcinoembryonic cell adhesion molecule 6 or CEACAM6) as a glycoprotein receptor for Influenza A virus.


Subject(s)
Antigens, CD/metabolism , Cell Adhesion Molecules/metabolism , Host-Pathogen Interactions , Influenza A virus/physiology , Influenza, Human/metabolism , Influenza, Human/virology , Receptors, Virus/metabolism , Antigens, CD/genetics , Cell Adhesion Molecules/genetics , Cell Line , Flow Cytometry , GPI-Linked Proteins/genetics , GPI-Linked Proteins/metabolism , Gene Expression , Gene Knockdown Techniques , Genes, Reporter , Humans , Influenza, Human/immunology , Influenza, Human/pathology , RNA, Small Interfering/genetics , Virus Attachment , Virus Internalization , Virus Replication
9.
J Biomol Struct Dyn ; 39(4): 1417-1430, 2021 Mar.
Article in English | MEDLINE | ID: mdl-32107969

ABSTRACT

Dengue virus (DENV) serine protease enzyme, i.e. NS2B-NS3pro (non-structural protein 2B-non-structural protein 3) has been approved as prime drug target for the drug discovery against dengue infection, because of its essential role in viral replication. This study demonstrates the potential of bioflavonoids from Azadirachta indica against dengue infection using computational and experimental approach. Initially, 49 bioflavonoids reported in Azadirachta indica were collected and virtually screened on the catalytic triad of DENV protease, results in the identification of kaempferol-3-O-rutinoside (-9.555 kcal/mol), rutin (-9.324 kcal/mol), hyperoside (-7.879 kcal/mol), and epicatechin (-7.622 kcal/mol) as potent viral protease inhibitors against reference compound quercetin (-6.94 kcal/mol). Subsequently, these docked complexes were analyzed for the stability via molecular dynamics simulations and free binding energy calculations, suggested the considerable stability of selected bioflavonoids with viral protease. Additionally, density functional theory and ADMET (Absorption, Distribution, Metabolism, Excretion and Toxicity) analysis indicated the least chemical reactivity and considerable medicinal properties, respectively for the screened bioflavonoids by comparison to quercetin. Accordingly, kaempferol 3-O-ß-rutinoside and epicatechin were evaluated at various concentrations for cell viability (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay) and in vitro antiviral activity (focus forming unit assay) against DENV-2 strain. The antiviral assay showed dose dependent inhibition of DENV-2 infectivity by the selected compounds while maximum 77.7% and 66.2% viral inhibition were recorded for 100 µM kaempferol 3-O-ß-rutinoside and 1000 µM epicatechin, respectively without significant cell toxicity. These results suggested the potential of bioflavonoids from Azadirachta indica in the development of effective drug against dengue infection.Communicated by Ramaswamy H. Sarma.


Subject(s)
Azadirachta , Dengue Virus , Dengue , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Dengue/drug therapy , Flavonoids/pharmacology , Molecular Docking Simulation , Protease Inhibitors , Serine Proteases , Viral Nonstructural Proteins
10.
J Virol ; 93(9)2019 05 01.
Article in English | MEDLINE | ID: mdl-30787155

ABSTRACT

Kaposi's sarcoma-associated herpesvirus (KSHV)-induced activation of nuclear factor erythroid 2-related factor 2 (Nrf2) is essential for both the expression of viral genes (latency) and modulation of the host antioxidant machinery. Reactive oxygen species (ROS) are also regulated by the ubiquitously expressed HACE1 protein (HECT domain and ankyrin repeat containing E3 ubiquitin protein ligase 1), which targets the Rac1 protein for proteasomal degradation, and this blocks the generation of ROS by Rac1-dependent NADPH oxidases. In this study, we examined the role of HACE1 in KSHV infection. Elevated levels of HACE1 expression were observed in de novo KSHV-infected endothelial cells, KSHV latently infected TIVE-LTC and PEL cells, and Kaposi's sarcoma skin lesion cells. The increased HACE1 expression in the infected cells was mediated by KSHV latent protein kaposin A. HACE1 knockdown resulted in high Rac1 and Nox 1 (NADPH oxidase 1) activity, increased ROS (oxidative stress), increased cell death, and decreased KSHV gene expression. Loss of HACE1 impaired KSHV infection-induced phosphoinositide 3-kinase (PI3-K), protein kinase C-ζ (PKC-ζ), extracellular signal-regulated kinase 1/2 (ERK1/2), NF-κB, and Nrf2 activation and nuclear translocation of Nrf2, and it reduced the expression of Nrf2 target genes responsible for balancing the oxidative stress. In the absence of HACE1, glutamine uptake increased in the cells to cope with the KSHV-induced oxidative stress. These findings reveal for the first time that HACE1 plays roles during viral infection-induced oxidative stress and demonstrate that HACE1 facilitates resistance to KSHV infection-induced oxidative stress by promoting Nrf2 activity. Our studies suggest that HACE1 could be a potential target to induce cell death in KSHV-infected cells and to manage KSHV infections.IMPORTANCE ROS play important roles in several cellular processes, and increased ROS cause several adverse effects. KSHV infection of endothelial cells induces ROS, which facilitate virus entry by amplifying the infection-induced host cell signaling cascade, which, in turn, induces the nuclear translocation of phospho-Nrf2 protein to regulate the expression of antioxidative genes and viral genes. The present study demonstrates that KSHV infection induces the E3 ligase HACE1 protein to regulate KSHV-induced oxidative stress by promoting the activation of Nrf2 and nuclear translocation. Absence of HACE1 results in increased ROS and cellular death and reduced nuclear Nrf2, antioxidant, and viral gene expression. Together, these studies suggest that HACE1 can be a potential target to induce cell death in KSHV-infected cells.


Subject(s)
Endothelial Cells/metabolism , Herpesviridae Infections/metabolism , Herpesvirus 8, Human/metabolism , NF-E2-Related Factor 2/metabolism , Oxidative Stress , Ubiquitin-Protein Ligases/biosynthesis , Cell Line , Endothelial Cells/pathology , Endothelial Cells/virology , Gene Expression Regulation, Enzymologic , Gene Expression Regulation, Viral , Herpesviridae Infections/genetics , Herpesvirus 8, Human/genetics , Humans , NADPH Oxidase 1/genetics , NADPH Oxidase 1/metabolism , NF-E2-Related Factor 2/genetics , Protein Kinase C/genetics , Protein Kinase C/metabolism , Ubiquitin-Protein Ligases/genetics , rac1 GTP-Binding Protein/genetics , rac1 GTP-Binding Protein/metabolism
12.
PLoS Pathog ; 12(10): e1005960, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27764233

ABSTRACT

Kaposi's sarcoma-associated herpesvirus (KSHV) binding to the endothelial cell surface heparan sulfate is followed by sequential interactions with α3ß1, αVß3 and αVß5 integrins and Ephrin A2 receptor tyrosine kinase (EphA2R). These interactions activate host cell pre-existing FAK, Src, PI3-K and RhoGTPase signaling cascades, c-Cbl mediated ubiquitination of receptors, recruitment of CIB1, p130Cas and Crk adaptor molecules, and membrane bleb formation leading to lipid raft dependent macropinocytosis of KSHV into human microvascular dermal endothelial (HMVEC-d) cells. The Endosomal Sorting Complexes Required for Transport (ESCRT) proteins, ESCRT-0, -I, -II, and-III, play a central role in clathrin-mediated internalized ubiquitinated receptor endosomal trafficking and sorting. ESCRT proteins have also been shown to play roles in viral egress. We have recently shown that ESCRT-0 component Hrs protein associates with the plasma membrane during macropinocytosis and mediates KSHV entry via ROCK1 mediated phosphorylation of NHE1 and local membrane pH change. Here, we demonstrate that the ESCRT-I complex Tsg101 protein also participates in the macropinocytosis of KSHV and plays a role in KSHV trafficking. Knockdown of Tsg101 did not affect virus entry in HMVEC-d and human umbilical vein endothelial (HUVEC) cells but significantly inhibited the KSHV genome entry into the nucleus and consequently viral gene expression in these cells. Double and triple immunofluorescence, proximity ligation immunofluorescence and co-immuoprecipitation studies revealed the association of Tsg101 with the KSHV containing macropinosomes, and increased levels of Tsg101 association/interactions with EphA2R, c-Cbl, p130Cas and Crk signal molecules, as well as with upstream and downstream ESCRT components such as Hrs (ESCRT-0), EAP45 (ESCRT-II), CHMP6 (ESCRT-III) and CHMP5 (ESCRT-III) in the KSHV infected cells. Tsg101 was also associated with early (Rab5) and late endosomal (Rab7) stages of KSHV intracellular trafficking, and CHMP5 (ESCRT-III) was also associated with Rab 5 and Rab 7. Knockdown of Tsg101 significantly inhibited the transition of virus from early to late endosomes. Collectively, our studies reveal that Tsg101 plays a role in the trafficking of macropinocytosed KSHV in the endothelial cells which is essential for the successful viral genome delivery into the nucleus, viral gene expression and infection. Thus, ESCRT molecules could serve as therapeutic targets to combat KSHV infection.


Subject(s)
DNA-Binding Proteins/metabolism , Endosomal Sorting Complexes Required for Transport/metabolism , Endothelial Cells/virology , Herpesviridae Infections , Host-Parasite Interactions/physiology , Transcription Factors/metabolism , Virus Internalization , Blotting, Western , Fluorescent Antibody Technique , Herpesvirus 8, Human , Humans , Immunoprecipitation , Microscopy, Fluorescence , Pinocytosis , Real-Time Polymerase Chain Reaction , Transfection
13.
PLoS Pathog ; 12(10): e1005967, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27764250

ABSTRACT

IFI16 (gamma-interferon-inducible protein 16), a predominantly nuclear protein involved in transcriptional regulation, also functions as an innate immune response DNA sensor and induces the IL-1ß and antiviral type-1 interferon-ß (IFN-ß) cytokines. We have shown that IFI16, in association with BRCA1, functions as a sequence independent nuclear sensor of episomal dsDNA genomes of KSHV, EBV and HSV-1. Recognition of these herpesvirus genomes resulted in IFI16 acetylation, BRCA1-IFI16-ASC-procaspase-1 inflammasome formation, cytoplasmic translocation, and IL-1ß generation. Acetylated IFI16 also interacted with cytoplasmic STING and induced IFN-ß. However, the identity of IFI16 associated nuclear proteins involved in STING activation and the mechanism is not known. Mass spectrometry of proteins precipitated by anti-IFI16 antibodies from uninfected endothelial cell nuclear lysate revealed that histone H2B interacts with IFI16. Single and double proximity ligation microscopy, immunoprecipitation, EdU-genome labeled virus infection, and chromatin immunoprecipitation studies demonstrated that H2B is associated with IFI16 and BRCA1 in the nucleus in physiological conditions. De novo KSHV and HSV-1 infection as well as latent KSHV and EBV infection induces the cytoplasmic distribution of H2B-IFI16, H2B-BRCA1 and IFI16-ASC complexes. Vaccinia virus (dsDNA) cytoplasmic replication didn't induce the redistribution of nuclear H2B-IFI16 or H2B into the cytoplasm. H2B is critical in KSHV and HSV-1 genome recognition by IFI16 during de novo infection. Viral genome sensing by IFI16-H2B-BRCA1 leads to BRCA1 dependent recruitment of p300, and acetylation of H2B and IFI16. BRCA1 knockdown or inhibition of p300 abrogated the acetylation of H2B-IFI16 or H2B. Ran-GTP protein mediated the translocation of acetylated H2B and IFI16 to the cytoplasm along with BRCA1 that is independent of IFI16-ASC inflammasome. ASC knockdown didn't affect the acetylation of H2B, its cytoplasmic transportation, and the association of STING with IFI16 and H2B during KSHV infection. Absence of H2B didn't affect IFI16-ASC association and cytoplasmic distribution and thus demonstrating that IFI16-H2B complex is independent of IFI16-ASC-procaspase-1-inflammasome complex formed during infection. The H2B-IFI16-BRCA1 complex interacted with cGAS and STING in the cytoplasm leading to TBK1 and IRF3 phosphorylation, nuclear translocation of pIRF3 and IFN-ß production. Silencing of H2B, cGAS and STING inhibited IFN-ß induction but not IL-1ß secretion, and cGAMP activity is significantly reduced by H2B and IFI16 knockdown during infection. Silencing of ASC inhibited IL-1ß secretion but not IFN-ß secretion during de novo KSHV and HSV-1 infection. These studies identify H2B as an innate nuclear sensor mediating a novel extra chromosomal function, and reveal that two IFI16 complexes mediate KSHV and HSV-1 genome recognition responses, with recognition by the IFI16-BRCA1-H2B complex resulting in IFN-ß responses and recognition by IFI16-BRCA1 resulting in inflammasome responses.


Subject(s)
Genome, Viral , Herpesviridae Infections/immunology , Histones/immunology , Interferon-beta/immunology , Nuclear Proteins/immunology , Phosphoproteins/immunology , Blotting, Western , Cells, Cultured , Chromatin Immunoprecipitation , Cytoplasm/immunology , Enzyme-Linked Immunosorbent Assay , Herpesviridae/immunology , Humans , Immunity, Innate , Immunoprecipitation , Inflammasomes/immunology , Interferon-beta/biosynthesis , Microscopy, Fluorescence
14.
J Virol ; 90(19): 8822-41, 2016 10 01.
Article in English | MEDLINE | ID: mdl-27466416

ABSTRACT

UNLABELLED: IFI16 (interferon gamma-inducible protein 16) recognizes nuclear episomal herpesvirus (Kaposi's sarcoma-associated herpesvirus [KSHV], Epstein-Barr virus [EBV], and herpes simplex virus 1 [HSV-1]) genomes and induces the inflammasome and interferon beta responses. It also acts as a lytic replication restriction factor and inhibits viral DNA replication (human cytomegalovirus [HCMV] and human papillomavirus [HPV]) and transcription (HSV-1, HCMV, and HPV) through epigenetic modifications of the viral genomes. To date, the role of IFI16 in the biology of latent viruses is not known. Here, we demonstrate that knockdown of IFI16 in the latently KSHV-infected B-lymphoma BCBL-1 and BC-3 cell lines results in lytic reactivation and increases in levels of KSHV lytic transcripts, proteins, and viral genome replication. Similar results were also observed during KSHV lytic cycle induction in TREX-BCBL-1 cells with the doxycycline-inducible lytic cycle switch replication and transcription activator (RTA) gene. Overexpression of IFI16 reduced lytic gene induction by the chemical agent 12-O-tetradecoylphorbol-13-acetate (TPA). IFI16 protein levels were significantly reduced or absent in TPA- or doxycycline-induced cells expressing lytic KSHV proteins. IFI16 is polyubiquitinated and degraded via the proteasomal pathway. The degradation of IFI16 was absent in phosphonoacetic acid-treated cells, which blocks KSHV DNA replication and, consequently, late lytic gene expression. Chromatin immunoprecipitation assays of BCBL-1 and BC-3 cells demonstrated that IFI16 binds to KSHV gene promoters. Uninfected epithelial SLK and osteosarcoma U2OS cells transfected with KSHV luciferase promoter constructs confirmed that IFI16 functions as a transcriptional repressor. These results reveal that KSHV utilizes the innate immune nuclear DNA sensor IFI16 to maintain its latency and repression of lytic transcripts, and a late lytic KSHV gene product(s) targets IFI16 for degradation during lytic reactivation. IMPORTANCE: Like all herpesviruses, latency is an integral part of the life cycle of Kaposi's sarcoma-associated herpesvirus (KSHV), an etiological agent for many human cancers. Herpesviruses utilize viral and host factors to successfully evade the host immune system to maintain latency. Reactivation is a complex event where the latent episomal viral genome springs back to active transcription of lytic cycle genes. Our studies reveal that KSHV has evolved to utilize the innate immune sensor IFI16 to keep lytic cycle transcription in dormancy. We demonstrate that IFI16 binds to the lytic gene promoter, acts as a transcriptional repressor, and thereby helps to maintain latency. We also discovered that during the late stage of lytic replication, KSHV selectively degrades IFI16, thus relieving transcriptional repression. This is the first report to demonstrate the role of IFI16 in latency maintenance of a herpesvirus, and further understanding will lead to the development of strategies to eliminate latent infection.


Subject(s)
Herpesvirus 8, Human/physiology , Nuclear Proteins/metabolism , Phosphoproteins/metabolism , Virus Latency , Virus Replication , Cell Line, Tumor , Gene Expression , Gene Knockdown Techniques , Host-Pathogen Interactions , Humans , Nuclear Proteins/antagonists & inhibitors , Nuclear Proteins/genetics , Phosphoproteins/antagonists & inhibitors , Phosphoproteins/genetics , Proteolysis
15.
J Virol ; 90(8): 3860-3872, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26819309

ABSTRACT

UNLABELLED: Kaposi's sarcoma-associated herpesvirus (KSHV) enters human dermal microvascular endothelial cells (HMVEC-d), its naturalin vivotarget cells, by lipid raft-dependent macropinocytosis. The internalized viral envelope fuses with the macropinocytic membrane, and released capsid is transported to the nuclear vicinity, resulting in the nuclear entry of viral DNA. The endosomal sorting complexes required for transport (ESCRT) proteins, which include ESCRT-0, -I, -II, and -III, play a central role in endosomal trafficking and sorting of internalized and ubiquitinated receptors. Here, we examined the role of ESCRT-0 component Hrs (hepatocyte growth factor-regulated tyrosine kinase substrate) in KSHV entry into HMVEC-d by macropinocytosis. Knockdown of Hrs by short hairpin RNA (shRNA) transduction resulted in significant decreases in KSHV entry and viral gene expression. Immunofluorescence analysis (IFA) and plasma membrane isolation and proximity ligation assay (PLA) demonstrated the translocation of Hrs from the cytosol to the plasma membrane of infected cells and association with α-actinin-4. In addition, infection induced the plasma membrane translocation and activation of the serine/threonine kinase ROCK1, a downstream target of the RhoA GTPase. Hrs knockdown reduced these associations, suggesting that the recruitment of ROCK1 is an Hrs-mediated event. Interaction between Hrs and ROCK1 is essential for the ROCK1-induced phosphorylation of NHE1 (Na(+)/H(+)exchanger 1), which is involved in the regulation of intracellular pH. Thus, our studies demonstrate the plasma membrane association of ESCRT protein Hrs during macropinocytosis and suggest that KSHV entry requires both Hrs- and ROCK1-dependent mechanisms and that ROCK1-mediated phosphorylation of NHE1 and pH change is an essential event required for the macropinocytosis of KSHV. IMPORTANCE: Macropinocytosis is the major entry pathway of KSHV in human dermal microvascular endothelial cells, the natural target cells of KSHV. Although the role of ESCRT protein Hrs has been extensively studied with respect to endosomal movement and sorting of ubiquitinated proteins into lysosomes, its function in macropinocytosis is not known. In the present study, we demonstrate for the first time that upon KSHV infection, the endogenous Hrs localizes to the plasma membrane and the membrane-associated Hrs facilitates assembly of signaling molecules, macropinocytosis, and virus entry. Hrs recruits ROCK1 to the membrane, which is required for the activation of NHE1 and an increase in submembranous intracellular pH occurring during macropinocytosis. These studies demonstrate that the localization of Hrs from the cytosol to the plasma membrane is important for coupling membrane dynamics to the cytosolic signaling events during macropinocytosis of KSHV.


Subject(s)
Endosomal Sorting Complexes Required for Transport/physiology , Endothelium, Vascular/virology , Herpesvirus 8, Human/physiology , Phosphoproteins/physiology , Pinocytosis , Virus Internalization , Actinin/metabolism , Cell Line , Cell Membrane/virology , Dermis/blood supply , Dermis/virology , Endosomal Sorting Complexes Required for Transport/genetics , Gene Expression , Gene Knockdown Techniques , Humans , Microvessels/cytology , Microvessels/virology , Phosphoproteins/genetics , rho-Associated Kinases/metabolism
16.
PLoS Pathog ; 11(7): e1005019, 2015 Jul.
Article in English | MEDLINE | ID: mdl-26134128

ABSTRACT

The IL-1ß and type I interferon-ß (IFN-ß) molecules are important inflammatory cytokines elicited by the eukaryotic host as innate immune responses against invading pathogens and danger signals. Recently, a predominantly nuclear gamma-interferon-inducible protein 16 (IFI16) involved in transcriptional regulation has emerged as an innate DNA sensor which induced IL-1ß and IFN-ß production through inflammasome and STING activation, respectively. Herpesvirus (KSHV, EBV, and HSV-1) episomal dsDNA genome recognition by IFI16 leads to IFI16-ASC-procaspase-1 inflammasome association, cytoplasmic translocation and IL-1ß production. Independent of ASC, HSV-1 genome recognition results in IFI16 interaction with STING in the cytoplasm to induce interferon-ß production. However, the mechanisms of IFI16-inflammasome formation, cytoplasmic redistribution and STING activation are not known. Our studies here demonstrate that recognition of herpesvirus genomes in the nucleus by IFI16 leads into its interaction with histone acetyltransferase p300 and IFI16 acetylation resulting in IFI16-ASC interaction, inflammasome assembly, increased interaction with Ran-GTPase, cytoplasmic redistribution, caspase-1 activation, IL-1ß production, and interaction with STING which results in IRF-3 phosphorylation, nuclear pIRF-3 localization and interferon-ß production. ASC and STING knockdowns did not affect IFI16 acetylation indicating that this modification is upstream of inflammasome-assembly and STING-activation. Vaccinia virus replicating in the cytoplasm did not induce nuclear IFI16 acetylation and cytoplasmic translocation. IFI16 physically associates with KSHV and HSV-1 genomes as revealed by proximity ligation microscopy and chromatin-immunoprecipitation studies which is not hampered by the inhibition of acetylation, thus suggesting that acetylation of IFI16 is not required for its innate sensing of nuclear viral genomes. Collectively, these studies identify the increased nuclear acetylation of IFI16 as a dynamic essential post-genome recognition event in the nucleus that is common to the IFI16-mediated innate responses of inflammasome induction and IFN-ß production during herpesvirus (KSHV, EBV, HSV-1) infections.


Subject(s)
Herpesviridae Infections/metabolism , Immunity, Innate/immunology , Interferon-beta/biosynthesis , Nuclear Proteins/metabolism , Phosphoproteins/metabolism , Protein Transport/immunology , Acetylation , Blotting, Western , Cell Line , Cell Nucleus/metabolism , Chromatin Immunoprecipitation , Cytoplasm/immunology , Cytoplasm/metabolism , Herpesviridae Infections/immunology , Herpesvirus 1, Human/immunology , Herpesvirus 1, Human/metabolism , Humans , Immunoprecipitation , Inflammasomes/immunology , Inflammasomes/metabolism , Microscopy, Fluorescence , Polymerase Chain Reaction , RNA, Small Interfering , Transfection
17.
PLoS Pathog ; 11(6): e1005030, 2015 Jun.
Article in English | MEDLINE | ID: mdl-26121674

ABSTRACT

The innate immune system pattern recognition receptors (PRR) are the first line of host defenses recognizing the various pathogen- or danger-associated molecular patterns and eliciting defenses by regulating the production of pro-inflammatory cytokines such as IL-1ß, IL-18 or interferon ß (IFN-ß). NOD-like receptors (NLRs) and AIM2-like receptors (ALRs) are cytoplasmic inflammasome sensors of foreign molecules, including DNA. IFI16, a sequence-independent nuclear innate sensor ALR, recognizes episomal dsDNA genomes of herpes viruses such as KSHV, EBV, and HSV-1 in the infected cell nuclei, forms an inflammasome complex with ASC and procaspase1, and relocates into the cytoplasm leading into Caspase-1 and IL-1ß generation. IFI16 also induces IFN-ß during HSV-1 infection via the cytoplasmic STING-TBK1-IRF3 pathway. Thus far, whether IFI16 recognizes foreign DNA directly or utilizes other host protein(s) is unknown. Here, we demonstrate that BRCA1, a DNA damage repair sensor and transcription regulator, is in complex with IFI16 in the host cell nucleus, and their association increases in the presence of nuclear viral genomes during de novo KSHV, EBV and HSV-1 infection, and in latent KSHV or EBV infection, but not by DNA damage responses (DDR) induced by bleomycin and vaccinia virus cytoplasmic dsDNA. BRCA1 is a constituent of the triggered IFI16-inflammasome and is translocated into the cytoplasm after genome recognition along with the IFI16-inflammasome. The absence of BRCA1 abrogated IFI16-viral genome association, inflammasome assembly, IFI16 cytoplasmic localization, and Caspase-1 and IL-1ß production. The absence of BRCA1 also abolished the cytoplasmic IFI16-STING interaction, downstream IRF3 phosphorylation, nuclear translocation of pIRF3 and IFN-ß production during de novo KSHV and HSV-1 infection. These findings highlight that BRCA1 plays a hitherto unidentified innate immunomodulatory role by facilitating nuclear foreign DNA sensing by IFI16, subsequent assembly and cytoplasmic distribution of IFI16-inflammasomes leading into IL-1ß formation and the induction of IFN-ß via cytoplasmic signaling through IFI16-STING, TBK1 and IRF3.


Subject(s)
BRCA1 Protein/metabolism , DNA, Viral/genetics , Herpesvirus 1, Human/genetics , Inflammasomes/metabolism , Interferon-beta/metabolism , Nuclear Proteins/metabolism , Phosphoproteins/metabolism , Cell Line , DNA-Binding Proteins/metabolism , Humans , Signal Transduction/genetics
18.
J Virol ; 88(5): 2821-34, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24352470

ABSTRACT

UNLABELLED: The DNA damage response (DDR) that evolved to repair host cell DNA damage also recognizes viral DNA entering the nucleus during infections. Here, we investigated the modulation of DDR signaling during de novo infection of primary endothelial cells by Kaposi's sarcoma-associated herpesvirus (KSHV). Phosphorylation of representative DDR-associated proteins, such as ataxia telangiectasia mutated (ATM) and H2AX, was induced as early as 30 min (0.5 h) postinfection and persisted during in vitro KSHV latency. Phosphorylated H2AX (γH2AX) colocalized at 30 min (0.5 h) with the KSHV genome entering the nuclei. Total H2AX protein levels also increased, and the increase was attributed to a decrease in degradative H2AX Lys48-linked polyubiquitination with a concomitant increase in Lys63-linked polyubiquitination that was shown to increase protein stability. ATM and H2AX phosphorylation and γH2AX nuclear foci were also induced by UV-inactivated KSHV, which ceased at later times of infection. Inhibition of ATM kinase activity by KU-55933 and H2AX knockdown by small interfering RNA significantly reduced the expression of the KSHV latency-associated nuclear antigen 1 (LANA-1; ORF73) and LANA-1 nuclear puncta. Knockdown of H2AX also resulted in a >80% reduction in the nuclear KSHV DNA copy numbers. Similar results were also observed in ATM-negative cells, although comparable levels of viral DNA entered ATM-negative and ATM-positive cell nuclei. In contrast, knockdown of CHK1 and CHK2 did not affect ORF73 expression. Collectively, these results demonstrate that KSHV induces ATM and H2AX, a selective arm of the DDR, for the establishment and maintenance of its latency during de novo infection of primary endothelial cells. IMPORTANCE: Eukaryotic cells mount a DNA damage response (DDR) to sense and repair different types of cellular DNA damage. In addition, DDR also recognizes exogenous genetic material, such as the viral DNA genome entering the nucleus during infections. The present study was undertaken to determine whether de novo Kaposi's sarcoma-associated herpesvirus (KSHV) infection modulates DDR. Our results demonstrate that early during de novo infection of primary endothelial cells, KSHV induces a selective arm of DDR signaling, such as the ATM kinase and its downstream target, H2AX, which are essential for KSHV's latent gene expression and the establishment of latency. These studies suggest that targeting ATM and H2AX could serve as an attractive strategy to block the establishment of KSHV latent infection and the associated malignancies.


Subject(s)
Ataxia Telangiectasia Mutated Proteins/metabolism , DNA Damage , Endothelial Cells/virology , Herpesvirus 8, Human/physiology , Histones/metabolism , Virus Latency , Antigens, Nuclear/genetics , Antigens, Viral/genetics , Antigens, Viral/metabolism , Ataxia Telangiectasia Mutated Proteins/antagonists & inhibitors , Ataxia Telangiectasia Mutated Proteins/genetics , Checkpoint Kinase 1 , Checkpoint Kinase 2/genetics , Checkpoint Kinase 2/metabolism , Gene Expression , Gene Expression Regulation, Viral , Gene Knockdown Techniques , Genome, Viral , Herpesviridae Infections/genetics , Herpesviridae Infections/metabolism , Histones/genetics , Humans , Models, Biological , Morpholines/pharmacology , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Phosphorylation , Protein Kinases/genetics , Protein Kinases/metabolism , Protein Transport , Pyrones/pharmacology , Signal Transduction , Viral Proteins/genetics , Virus Latency/genetics
19.
PLoS Pathog ; 9(7): e1003510, 2013.
Article in English | MEDLINE | ID: mdl-23874206

ABSTRACT

Kaposi's sarcoma-associated herpesvirus (KSHV) interacts with human dermal endothelial cell surface tyrosine kinase EphrinA2 (EphA2) and integrins (α3ß1 and αVß3) in the lipid raft (LR) region, and EphA2 regulates macropinocytic virus entry by coordinating integrin-c-Cbl associated signaling. In contrast, KSHV enters human foreskin fibroblast (HFF) cells by LR-independent clathrin mediated endocytosis. The present studies conducted to identify the key molecules regulating KSHV entry in HFF cells showed that KSHV induces association with integrins (αVß5, αVß3 and α3ß1) and EphA2 in non-LR regions early during infection and activates EphA2, which in turn associates with phosphorylated c-Cbl, myosin IIA, FAK, Src, and PI3-K, as well as clathrin and its adaptor AP2 and effector Epsin-15 proteins. EphA2 knockdown significantly reduced these signal inductions, virus internalization and gene expression. c-Cbl knockdown ablated the c-Cbl mediated K63 type polyubiquitination of EphA2 and clathrin association with EphA2 and KSHV. Mutations in EphA2's tyrosine kinase domain (TKD) or sterile alpha motif (SAM) abolished its interaction with c-Cbl. Mutations in tyrosine kinase binding (TKB) or RING finger (RF) domains of c-Cbl resulted in very poor association of c-Cbl with EphA2 and decreased EphA2 polyubiquitination. These studies demonstrated the contributions of these domains in EphA2 and c-Cbl association, EphA2 polyubiquitination and virus-EphA2 internalization. Collectively, these results revealed for the first time that EphA2 influences the tyrosine phosphorylation of clathrin, the role of EphA2 in clathrin mediated endocytosis of a virus, and c-Cbl mediated EphA2 polyubiquitination directing KSHV entry in HFF cells via coordinated signal induction and progression of endocytic events, all of which suggest that targeting EphA2 and c-Cbl could block KSHV entry and infection.


Subject(s)
Clathrin-Coated Vesicles/metabolism , Endocytosis , Ephrin-A2/metabolism , Fibroblasts/virology , Herpesvirus 8, Human/physiology , Integrins/metabolism , Proto-Oncogene Proteins c-cbl/metabolism , Cells, Cultured , Ephrin-A2/agonists , Ephrin-A2/antagonists & inhibitors , Ephrin-A2/genetics , Fibroblasts/cytology , Fibroblasts/metabolism , Gene Expression Regulation, Viral , HEK293 Cells , Humans , Mutant Proteins/agonists , Mutant Proteins/antagonists & inhibitors , Mutant Proteins/chemistry , Mutant Proteins/metabolism , Phosphorylation , Protein Interaction Domains and Motifs , Protein Processing, Post-Translational , RNA Interference , RNA, Small Interfering , Signal Transduction , Ubiquitination , Up-Regulation , Viral Proteins/biosynthesis , Viral Proteins/genetics , Viral Proteins/metabolism , Virus Internalization
20.
J Virol ; 87(15): 8606-23, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23720728

ABSTRACT

Epstein-Barr virus (EBV), etiologically linked with human B-cell malignancies and nasopharyngeal carcinoma (NPC), establishes three types of latency that facilitate its episomal genome persistence and evasion of host immune responses. The innate inflammasome responses recognize the pathogen-associated molecular patterns which lead into the association of a cytoplasmic sensor such as NLRP3 and AIM2 proteins or nuclear interferon-inducible protein 16 (IFI16) with adaptor ASC protein (apoptosis-associated speck-like protein with a caspase recruitment domain) and effector procaspase-1, resulting in active caspase-1 formation which cleaves the proforms of inflammatory interleukin-1ß (IL-1ß), IL-18, and IL-33 cytokines. Whether inflammasome responses recognize and respond to EBV genome in the nuclei was not known. We observed evidence of inflammasome activation, such as the activation of caspase-1 and cleavage of pro-IL-1ß, -IL-18, and -IL-33, in EBV latency I Raji cells, latency II NPC C666-1 cells, and latency III lymphoblastoid cell lines (LCL). Interaction between ASC with IFI16 but not with AIM2 or NLRP3 was detected in all three latencies and during EBV infection of primary human B cells. IFI16 and cleaved caspase-1, IL-1ß, IL-18, and IL-33 were detected in the exosomes from Raji cells and LCL. Though EBV nuclear antigen 1 (EBNA1) and EBV-encoded small RNAs (EBERs) are common to all forms of EBV latency, caspase-1 cleavage was not detected in cells expressing EBNA1 alone, and blocking EBER transcription did not inhibit caspase-1 cleavage. In fluorescence in situ hybridization (FISH) analysis, IFI16 colocalized with the EBV genome in LCL and Raji cell nuclei. These studies demonstrated that constant sensing of latent EBV genome by IFI16 in all types of latency results in the constitutive induction of the inflammasome and IL-1ß, IL-18, and IL-33 maturation.


Subject(s)
B-Lymphocytes/immunology , Epithelial Cells/immunology , Herpesvirus 4, Human/immunology , Herpesvirus 4, Human/physiology , Inflammasomes/metabolism , Nuclear Proteins/metabolism , Phosphoproteins/metabolism , Virus Latency , B-Lymphocytes/virology , Cells, Cultured , Epithelial Cells/virology , Humans , Hydrolysis , Interleukin-18/metabolism , Interleukin-1beta/metabolism , Interleukin-33 , Interleukins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...