Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 16(8): 10565-10579, 2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38377563

ABSTRACT

Post-traumatic hemorrhage, which can result from accidents or battlefield injuries, is a significant global concern due to the high prehospital mortality rate. Substantial efforts have been made to develop hemostatic agents that can effectively reduce hemorrhage in the immediate aftermath of a traumatic event. The present study investigated the potential efficacy of Ca2+ and Zn2+ supplemented sodium alginate-based dry hemostatic particles (SA-CZ DHP) to manage excessive blood loss or post-traumatic hemorrhage. SA-CZ DHP were developed, followed by their physical and biochemical characterization, cytocompatibility and hemocompatibility testing, and critical evaluation of the hemostatic potential in vitro and in vivo. The safe SA-CZ DHP showed high absorption and accelerated blood clotting kinetics with reduced coagulation time (≈70%, p < 0.0001) in whole human blood, observed with insignificant hemolysis and uninterrupted RBC morphology. SA-CZ DHP significantly reduced the mean blood loss (≈90% in SD rats tail incision), and bleeding time (≈60% in BALB/c mice tail incision) was at par with commercially available Celox hemostatic granules. In conclusion, the biocompatible SA-CZ DHP exhibited rapid and effective management of excessive blood loss. It is also pertinent to note that the developed formulation could be a cost-effective alternative to its commercial counterparts.


Subject(s)
Hemostatics , Mice , Rats , Humans , Animals , Hemostatics/pharmacology , Hemostatics/therapeutic use , Hemostatics/chemistry , Alginates/therapeutic use , Alginates/pharmacology , Calcium , Zinc/therapeutic use , Zinc/pharmacology , Rats, Sprague-Dawley , Hemorrhage/drug therapy , Hemostasis
2.
Carbohydr Polym ; 299: 120186, 2023 Jan 01.
Article in English | MEDLINE | ID: mdl-36876801

ABSTRACT

We developed, characterized, and examined the hemostatic potential of sodium alginate-based Ca2+ and Zn2+ composite hydrogel (SA-CZ). SA-CZ hydrogel showed substantial in-vitro efficacy, as observed by the significant reduction in coagulation time with better blood coagulation index (BCI) and no evident hemolysis in human blood. SA-CZ significantly reduced bleeding time (≈60 %) and mean blood loss (≈65 %) in the tail bleeding and liver incision in the mice hemorrhage model (p ≤ 0.001). SA-CZ also showed enhanced cellular migration (1.58-fold) in-vitro and improved wound closure (≈70 %) as compared with betadine (≈38 %) and saline (≈34 %) at the 7th-day post-wound creation in-vivo (p < 0.005). Subcutaneous implantation and intra-venous gamma-scintigraphy of hydrogel revealed ample body clearance and non-considerable accumulation in any vital organ, proving its non-thromboembolic nature. Overall, SA-CZ showed good biocompatibility along with efficient hemostasis and wound healing qualities, making it suitable as a safe and effective aid for bleeding wounds.


Subject(s)
Calcium , Hydrogels , Humans , Animals , Mice , Zinc , Alginates , Hemostasis
3.
Curr Protein Pept Sci ; 22(9): 666-674, 2021 Dec 27.
Article in English | MEDLINE | ID: mdl-34751114

ABSTRACT

The moonlighting protein, Prdx-6, exhibits peroxidase activity, phospholipase activity, and lysophosphatidylcholine acyltransferase (LPCAT) activity. Although it is ubiquitous in expression, its level is prominently high in the lung. Prdx-6 has been known to be an important enzyme for the maintenance of normal lung physiologies including, anti-oxidant defense, lung surfactant homeostasis, and cell signaling. Studies further unveiled that the altered activity (peroxidase or ai- PLA2) of this enzyme is linked with various lung pathologies or diseases. In the present article, we attempted to address the various pathophysiologies or disease conditions (like lung ischemia, hyperoxia, lung cancer, emphysema, and acute lung injury) wherein Prdx-6 is involved. The study implicates that Prdx-6 could be used as a common drug target for multiple lung diseases. Important future insights have also been incorporated.


Subject(s)
Peroxiredoxin VI
4.
PLoS One ; 7(7): e41422, 2012.
Article in English | MEDLINE | ID: mdl-22848490

ABSTRACT

Chemical synthesis of Ag-NPs was carried out using reduction method. The reduction mechanistic approach of silver ions was found to be a basic clue for the formation of the Ag-NPs. The nanoparticles were characterized by UV-vis, FT-IR and TEM analysis. We had designed some experiments in support of our hypothesis, "low concentrations of novel nanoparticles (silver and gold) increases the activity of plant peroxidases and alter their structure also", we had used Ag-NPs and HRP as models. The immobilization/interaction experiment had demonstrated the specific concentration range of the Ag-NPs and within this range, an increase in HRP activity was reported. At 0.08 mM concentration of Ag-NPs, 50% increase in the activity yield was found. The U.V-vis spectra had demonstrated the increase in the absorbance of HRP within the reported concentration range (0.06-0.12 mM). Above and below this concentration range there was a decrease in the activity of HRP. The results that we had found from the fluorescence spectra were also in favor of our hypothesis. There was a maximum increase in ellipticity and α-helix contents in the presence of 0.08 mM concentration of Ag-NPs, demonstrated by circular dichroism (CD) spectra. Finally, incubation of a plant peroxidase, HRP with Ag-NPs, within the reported concentration range not only enhances the activity but also alter the structure.


Subject(s)
Armoracia/enzymology , Horseradish Peroxidase/chemistry , Metal Nanoparticles/chemistry , Plant Proteins/chemistry , Silver/chemistry , Protein Structure, Secondary , Spectrometry, Fluorescence , Spectrophotometry, Ultraviolet
SELECTION OF CITATIONS
SEARCH DETAIL
...