Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Pharmaceutics ; 15(8)2023 Aug 02.
Article in English | MEDLINE | ID: mdl-37631288

ABSTRACT

Poor aqueous solubility and dissolution limit the oral bioavailability of Biopharmaceutics Classification System (BCS) class II drugs. In this study, we aimed to improve the aqueous solubility and oral bioavailability of raloxifene hydrochloride (RLX), a BCS class II drug, using a self-microemulsifying drug delivery system (SMEDDS). Based on the solubilities of RLX, Capryol 90, Tween 80/Labrasol ALF, and polyethylene glycol 400 (PEG-400) were selected as the oil, surfactant mixture, and cosurfactant, respectively. Pseudo-ternary phase diagrams were constructed to determine the optimal composition (Capryol 90/Tween 80/Labrasol ALF/PEG-400 in 150/478.1/159.4/212.5 volume ratio) for RLX-SMEDDS with a small droplet size (147.1 nm) and stable microemulsification (PDI: 0.227). Differential scanning calorimetry and powder X-ray diffraction of lyophilized RLX-SMEDDS revealed the loss of crystallinity, suggesting a molecularly dissolved or amorphous state of RLX in the SMEDDS formulation. Moreover, RLX-SMEDDS exhibited significantly higher saturation solubility and dissolution rate in water, simulated gastric fluid (pH 1.2), and simulated intestinal fluid (pH 6.8) than RLX powder. Additionally, oral administration of RLX-SMEDDS to female rats resulted in 1.94- and 1.80-fold higher area under the curve and maximum plasma concentration, respectively, than the RLX dispersion. Collectively, our findings suggest SMEDDS is a promising oral formulation to enhance the therapeutic efficacy of RLX.

2.
Drug Deliv ; 28(1): 2510-2524, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34842018

ABSTRACT

Poor aqueous solubility of eplerenone (EPL) is a major obstacle to achieve sufficient bioavailability after oral administration. In this study, we aimed to develop and evaluate eplerenone nanocrystals (EPL-NCs) for solubility and dissolution enhancement. D-optimal combined mixture process using Design-Expert software was employed to generate different combinations for optimization. EPL-NCs were prepared by a bottom-up, controlled crystallization technique during freeze-drying. The optimized EPL-NCs were evaluated for their size, morphology, thermal behavior, crystalline structure, saturation solubility, dissolution profile, in vivo pharmacokinetics, and acute toxicity. The optimized EPL-NCs showed mean particle size of 46.8 nm. Scanning electron microscopy revealed the formation of elongated parallelepiped shaped NCs. DSC and PXRD analysis confirmed the crystalline structure and the absence of any polymorphic transition in EPL-NCs. Furthermore, EPL-NCs demonstrated a 17-fold prompt increase in the saturation solubility of EPL (8.96 vs. 155.85 µg/mL). The dissolution rate was also significantly higher as indicated by ∼95% dissolution from EPL-NCs in 10 min compared to only 29% from EPL powder. EPL-NCs improved the oral bioavailability as indicated by higher AUC, Cmax, and lower Tmax than EPL powder. Acute oral toxicity study showed that EPL-NCs do not pose any toxicity concern to the blood and vital organs. Consequently, NCs prepared by controlled crystallization technique present a promising strategy to improve solubility profile, dissolution velocity and bioavailability of poorly water-soluble drugs.


Subject(s)
Antihypertensive Agents/pharmacokinetics , Eplerenone/pharmacokinetics , Nanoparticles/chemistry , Administration, Oral , Animals , Antihypertensive Agents/administration & dosage , Area Under Curve , Body Weight , Calorimetry, Differential Scanning , Chemistry, Pharmaceutical , Drug Liberation , Drug Stability , Eplerenone/administration & dosage , Freeze Drying , Male , Metabolic Clearance Rate , Mice , Microscopy, Electron, Scanning , Particle Size , Rats , Rats, Sprague-Dawley , Solubility , X-Ray Diffraction
3.
Colloids Surf B Biointerfaces ; 194: 111209, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32599505

ABSTRACT

The potential of duloxetine-loaded solid lipid nanoparticles (DLX-SLNs) for enhanced antidepressant activity was investigated in the current study. Nano-template engineering technology was successfully employed for the preparation of DLX-SLNs. In vivo forced swim and tail suspension tests were used to evaluate behavioral changes of rats in lipopolysaccharide-induced depression. The determination of brain-derived neurotropic factor (BDNF) in brain and plasma was carried out using enzyme-linked immunosorbent assay. The incorporation efficiency of optimized DLX-SLNs formulation was found to be 80 % with particle size of 114.5 nm, PDI of 0.29 and zeta potential of -18.2 mV. Powder X-ray diffractometry and differential scanning calorimetry demonstrated sufficient incorporation into lipid matrix and amorphous behavior of DLX. In vitro release profile of DLX-SLNs showed a sustained release achieving a cumulative amount of 52.97 % for 24 h. DLX-SLNs showed a significant decrease in immobility time in forced swim and tail suspension tests. DLX-SLNs increased BDNF levels in plasma and brain after 2 weeks. Immunohistochemistry results demonstrated significant reduction in the expression of tumor necrosis factor-α and cyclooxygenase enzyme-2 in brain. In conclusion, solid lipid nanoparticles can be utilized as a potential carrier for the delivery of antidepressant drugs into the brain.


Subject(s)
Lipopolysaccharides , Nanoparticles , Animals , Antidepressive Agents/pharmacology , Drug Carriers , Duloxetine Hydrochloride , Particle Size , Rats
4.
Int J Pharm ; 577: 119033, 2020 Mar 15.
Article in English | MEDLINE | ID: mdl-31954864

ABSTRACT

The limited brain delivery of carbamezapine (CBZ) presents a major hurdle in the successful epilepsy treatment. The potential of carbamezapine-loaded nanostructured lipid carriers (CBZ-NLCs) for improved brain delivery is investigated in the current study. CBZ-NLCs were prepared by using binary mixture of trilaurin and oleic acid as a lipid core stabilized with Poloxamer 188, Tween 80 and Span 80. CBZ-NLCs were evaluated for physicochemical properties, in vitro release, in vivo brain kinetics, anticonvulsant and anxiolytic activities. The optimized CBZ-NLCs demonstrated nanometric particle size (97.7 nm), surface charge of -22 mV and high drug incorporation (85%). CBZ-NLCs displayed biphasic release pattern with initial fast followed by sustained drug release. CBZ-NLCs significantly enhanced the AUC of CBZ (520.4 µg·h/mL) in brain compared with CBZ dispersion (244.9 µg·h/mL). In vivo anticonvulsant activity of CBZ-NLCs in PTZ-induced seizure model showed a significant increase in the onset time (143.0 sec) and reduction in duration (17.2 sec) of tonic-clonic seizures compared with CBZ dispersion (75.4 and 37.2 sec). The anxiolytic activity in light-dark box and elevated-plus maze models also demonstrated superiority of CBZ-NLCs to CBZ dispersion. From the results, CBZ-NLCs presents a promising strategy to improve brain delivery and therapeutic outcomes of CBZ in epilepsy.


Subject(s)
Carbamazepine/chemistry , Lipids/chemistry , Nanostructures/chemistry , Seizures/prevention & control , Animals , Anti-Anxiety Agents/blood , Anti-Anxiety Agents/chemistry , Anti-Anxiety Agents/pharmacokinetics , Anti-Anxiety Agents/pharmacology , Anticonvulsants/blood , Anticonvulsants/chemistry , Anticonvulsants/pharmacokinetics , Anticonvulsants/pharmacology , Behavior, Animal/drug effects , Brain/metabolism , Carbamazepine/blood , Carbamazepine/pharmacokinetics , Carbamazepine/pharmacology , Drug Carriers/chemistry , Drug Liberation , Hexoses/chemistry , Male , Oleic Acid/chemistry , Particle Size , Poloxamer/chemistry , Polysorbates/chemistry , Rats , Seizures/chemically induced , Surface Properties , Triglycerides/chemistry
5.
Int J Pharm ; 560: 136-143, 2019 Apr 05.
Article in English | MEDLINE | ID: mdl-30753932

ABSTRACT

The objective of current study was to develop solid lipid nanoparticles-loaded with simvastatin (SIM-SLNs) and investigate their in vivo anti-hyperlipidemic activity in poloxamer-induced hyperlipidemia model. Nano-template engineering technique was used to prepare SIM-SLNs with palmityl alcohol as lipid core and a mixture of Tween 40/Span 40/Myrj 52 to stabilize the core. The prepared SIM-SLNs were evaluated for physicochemical parameters including particle diameter, surface charge, morphology, incorporation efficiency, thermal behaviour and crystallinity. In vitro release profile of SIM-SLNs in simulated gastric and intestinal fluids was evaluated by using dialysis bag technique and anti-hyperlipidemic activity was assessed in hyperlipidemia rat model. SIM-SLNs revealed uniform particle size with spherical morphology, zeta potential of -24.9 mV and high incorporation efficiency (∼85%). Thermal behaviour and crystallinity studies demonstrated successful incorporation of SIM in the lipid core and its conversion to amorphous form. SIM-SLNs demonstrated a sustained SIM release from the lipid core of nanoparticles. SIM-SLNs significantly reduced the elevated serum lipids as indicated by ∼3.9 and ∼1.5-times decreased total cholesterol compared to those of untreated control and SIM dispersion treated hyperlipidemic rats. In conclusion, SIM-SLNs showed a great promise for improving the therapeutic outcomes of SIM via its effective oral delivery.


Subject(s)
Hyperlipidemias/drug therapy , Hypolipidemic Agents/administration & dosage , Nanoparticles , Simvastatin/administration & dosage , Administration, Oral , Animals , Crystallization , Delayed-Action Preparations , Disease Models, Animal , Drug Carriers/chemistry , Drug Delivery Systems , Drug Liberation , Hypolipidemic Agents/pharmacology , Lipids/chemistry , Male , Particle Size , Rats , Rats, Sprague-Dawley , Simvastatin/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...