Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Plant Biotechnol J ; 22(4): 848-862, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38127946

ABSTRACT

Faster vegetative growth and early maturity/harvest reduce plant life cycle time and are important agricultural traits facilitating early crop rotation. GA is a key hormone governing developmental transitions that determine growth speed in plants. An EAR-motif repressor, SlERF36 that regulates various growth transitions, partly through regulation of the GA pathway and GA levels, was identified in tomato. Suppression of SlERF36 delayed germination, slowed down organ growth and delayed the onset of flowering time, fruit harvest and whole-plant senescence by 10-15 days. Its over-expression promoted faster growth by accelerating all these transitions besides increasing organ expansion and plant height substantially. The plant life cycle and fruit harvest were completed 20-30 days earlier than control without affecting yield, in glasshouse as well as net-house conditions, across seasons and generations. These changes in life cycle were associated with reciprocal changes in expression of GA pathway genes and basal GA levels between suppression and over-expression lines. SlERF36 interacted with the promoters of two GA2 oxidase genes, SlGA2ox3 and SlGA2ox4, and the DELLA gene, SlDELLA, reducing their transcription and causing a 3-5-fold increase in basal GA3/GA4 levels. Its suppression increased SlGA2ox3/4 transcript levels and reduced GA3/GA4 levels by 30%-50%. SlERF36 is conserved across families making it an important candidate in agricultural and horticultural crops for manipulation of plant growth and developmental transitions to reduce life cycles for faster harvest.


Subject(s)
Gibberellins , Solanum lycopersicum , Humans , Animals , Gibberellins/metabolism , Solanum lycopersicum/genetics , Plant Proteins/metabolism , Plant Growth Regulators/metabolism , Life Cycle Stages , Gene Expression Regulation, Plant/genetics
2.
ACS Omega ; 7(46): 41997-42011, 2022 Nov 22.
Article in English | MEDLINE | ID: mdl-36440176

ABSTRACT

Low-cost alginate gels of activated carbons were prepared, which were derived from the peels of banana and sweet lime. The synthesized carbon was activated and immobilized on alginate, producing its gel. These gels were categorized according to their methods of drying, in which air drying, freeze drying, and supercritical drying led to the formation of xerogels, cryogels, and aerogels, respectively. The gels were used for adsorption of heavy metals from their aqueous solution. The heavy metals that were targeted for removal were Pb(II), Cd(II), Cr(VI), As(III), and Hg(II). Among all the adsorbents, the alginate cryogel of sweet lime-derived activated carbon (SLACC) showed the highest removal percentage of heavy metals, and thus, it was used for batch study. The adsorption of heavy metals by SLACC was checked at different times, pH values, adsorbent doses, temperatures, and adsorbate concentrations. The study revealed that the pseudo-second-order model best described the kinetic study, while the adsorption followed the Freundlich isotherm. SLACC showed maximum adsorption capacities (q cal) of 3.71, 4.22, 20.04, 7.31, and 4.37 mg/g for Cr, Cd, Pb, As, and Hg, respectively, when 20 mg of SLACC was used for the removal of 4 ppm concentration of the targeted heavy metals from their 20 mL solution. Based on the thermodynamic study, it was found that the adsorption was spontaneous and exothermic. Furthermore, the adsorbent was also used on real water samples and showed up to 90% removal efficiency for these targeted heavy metals. SLACC was regenerated with 0.1 M ethylenediaminetetraacetic acid (EDTA) solution and reused for five cycles, in which the percentage removal of heavy metals was more than 50% till the fourth cycle. Furthermore, the leaching study showed that no toxic elements had leached from SLACC into water, making it a safe adsorbent.

3.
ACS Omega ; 6(5): 3931-3945, 2021 Feb 09.
Article in English | MEDLINE | ID: mdl-33644530

ABSTRACT

In this study, magnetite-manganese oxide (Fe3O4-MnO2) nanoparticles were synthesized and immobilized on alginate, producing a magnetite-manganese oxide xerogel (mMOX). This eco-friendly xerogel was used as an adsorbent of Cr(VI) and Cd(II). It was mesoporous and thermally stable, as determined by Brunauer-Emmett-Teller and thermogravimetric analysis. A scanning electron microscope coupled with an energy-dispersive X-ray system, Zetasizer, and attenuated total reflectance-Fourier transform infrared were used for characterization of adsorbents. The performance of the mMOX was investigated for the simultaneous adsorption of Cr(VI) and Cd(II) at different temperatures, pH values, contact times, initial concentrations of the adsorbate, and adsorbent doses. The developed xerogel (mMOX) showed high adsorption capacities of 3.86 mg/g for Cr(VI) and 3.95 mg/g for Cd(II) on 120 min of contact time with 5 ppm Cr(VI) and Cd(II) solution. The kinetic data fitted well with the pseudo-second order, while the Freundlich isotherm model was found to be fit for adsorption data. Thermodynamic study revealed the adsorption to be spontaneous and exothermic. The adsorbent showed useful application for real water samples by more than 75% uptake of Cr and Cd with low adsorption of Na, K, and Mg. The regeneration study indicated that the mMOX could be reused up to six cycles with more than 50% removal of Cr(VI) and Cd(II) ions from aqueous solution with minimal leaching of metal ions (Fe, Ca, Na, K, and Mn) into the solution.

4.
J Chromatogr A ; 1509: 35-42, 2017 Aug 04.
Article in English | MEDLINE | ID: mdl-28641832

ABSTRACT

A sensitive, rapid and efficient ionic liquid-based vortex assisted liquid-liquid microextraction (IL-VALLME) with Liquid Chromatography Mass spectrometry (LC-MS/MS) method is proposed for the determination of bisphenols in thermal paper. Extraction factors were systematically optimized by response surface methodology. Experimental factors showing significant effects on the analytical responses were evaluated using design of experiment. The limit of detection for Bisphenol-A (BPA) and Bisphenol-S (BPS) in thermal paper were 1.25 and 0.93µgkg-1 respectively. The dynamic linearity range for BPA was between 4 and 100µgkg-1 and the determination of coefficient (R2) was 0.996. The values of the same parameters were 3-100µgkg-1 and 0.998 for BPS. The extraction recoveries of BPA and BPS in thermal paper were 101% and 99%. Percent relative standard deviation (% RSD) for matrix effect and matrix match effects were not more than 10%, for both bisphenols. The proposed method uses a statistical approach for the analysis of bisphenols in environmental samples, and is easy, rapid, requires minimum organic solvents and efficient.


Subject(s)
Benzhydryl Compounds/isolation & purification , Chromatography, High Pressure Liquid/methods , Ionic Liquids/chemistry , Liquid Phase Microextraction/methods , Phenols/isolation & purification , Sulfones/isolation & purification , Tandem Mass Spectrometry/methods , Benzhydryl Compounds/chemistry , Liquid Phase Microextraction/instrumentation , Paper , Phenols/analysis , Phenols/chemistry , Sulfones/analysis
5.
J Chromatogr A ; 1377: 27-34, 2015 Jan 16.
Article in English | MEDLINE | ID: mdl-25542703

ABSTRACT

A new sample preparation technique named as fast agitated directly suspended droplet microextraction (FA-DSDME) was proposed as an improved version of directly suspended droplet microextraction (DSDME) for the extraction and pre-concentration of wide-range organophosphorus pesticides (OPPs) from human blood prior to liquid chromatography tandem mass spectrometric (LC-MS/MS) analysis. In this method, instead of protecting the unwanted rupturing of extraction droplet (organic solvent), it was deliberately splintered into fine droplets by providing automated high-speed agitation to the biphasic extraction system (extraction solvent and sample solution). Fine organic droplets were then recollected into one, not by using a centrifuge machine but just by giving a very slow stirring to the bottom of the extraction system. The present method has surmounted the problem of prolonged extraction time associated with old DSDME. Under optimum extraction conditions, the method showed good sensitivity with low detection limits ranging from 0.0009 to 0.122µgL(-1). Mean recoveries were achieved in the range of 86-109% at three levels of spiking concentration (low, middle and high) from linearity range of individual analyte. Intra-day and inter-day precisions were ≤4.68 and ≤9.57 (%RSD) respectively. Enrichment factor (EF) for each analyte varied from 30 to 132 which prove the ability of this technique to pre-concentrate the extracted analytes up to a good extent. The sample matrices have shown an insignificant influence on method's sensitivity. The proposed method may find immense use in epidemiological, toxicological, regulatory and forensic laboratories.


Subject(s)
Blood Chemical Analysis/methods , Organophosphorus Compounds/blood , Pesticides/blood , Chromatography, Liquid , Humans , Limit of Detection , Organic Chemicals/analysis , Solvents/chemistry , Tandem Mass Spectrometry
6.
J Food Sci ; 77(1): T34-40, 2012 Jan.
Article in English | MEDLINE | ID: mdl-22133078

ABSTRACT

UNLABELLED: Chocolate is a key ingredient in many foods such as milk shakes, candies, bars, cookies, and cereals. Chocolate candies are often consumed by mankind of all age groups. The presence of polycyclic aromatic hydrocarbons (PAHs) in chocolate candies may result in health risk to people. A rapid, precise, and economic extraction method was optimized and validated for the simultaneous determination of polycyclic aromatic hydrocarbons in chocolate candy by high-performance liquid chromatography (HPLC) and gas chromatography-mass spectrometry (GS-MS) as a confirmatory technique. The method was optimized by using different solvents for liquid-liquid extraction, varying volume of de-emulsifying agent, and quantity of silica gel used for purification. The HPLC separation of 16 PAHs was carried out by C-18 column with mobile phase composed of acetonitrile : water (70 : 30) in isocratic mode with runtime of 20 min. Limit of detection, limit of quantification (LOQ), and correlation coefficients were found in the range of 0.3 to 4 ng g⁻¹, 0.9 to 12 ng g⁻¹, and 0.9109 to 0.9952, respectively. The exploration of 25 local chocolate candy samples for the presence of PAHs showed the mean content of benzo[a]pyrene as 1.62 ng g⁻¹, which representing the need to evaluate effective measures to prevent more severe PAHs contamination in chocolate candies in future. PRACTICAL APPLICATION: Chocolate is one of the most favorite food items among people, especially children. Chocolate candies are often consumed by mankind of all age groups. Chocolate candies are often consumed by children in large quantities. The presence PAHs in chocolate candies may result in health risk to people. In the present study, a precise and cost effective rapid method was employed for the determination of PAHs, which can be employed for daily routine analysis of PAHs in chocolate products.


Subject(s)
Cacao/chemistry , Candy/analysis , Environmental Pollutants/analysis , Food Contamination , Polycyclic Aromatic Hydrocarbons/analysis , Cacao/adverse effects , Calibration , Candy/adverse effects , Chromatography, High Pressure Liquid , Chromatography, Reverse-Phase , Environmental Pollutants/chemistry , Environmental Pollutants/toxicity , Gas Chromatography-Mass Spectrometry , India , Limit of Detection , Liquid-Liquid Extraction , Molecular Weight , Polycyclic Aromatic Hydrocarbons/chemistry , Polycyclic Aromatic Hydrocarbons/toxicity
SELECTION OF CITATIONS
SEARCH DETAIL
...