Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Pharmaceuticals (Basel) ; 17(6)2024 Jun 08.
Article in English | MEDLINE | ID: mdl-38931424

ABSTRACT

Diabetes, a multifactorial metabolic disorder, demands the discovery of multi-targeting drugs with minimal side effects. This study investigated the multi-targeting antidiabetic potential of quercetin and kaempferol. The druggability and binding affinities of both compounds towards multiple antidiabetic targets were explored using pharmacokinetic and docking software (AutoDock Vina 1.1.2). Our findings showed that quercetin and kaempferol obey Lipinski's rule of five and exhibit desirable ADMET (absorption, distribution, metabolism excretion, and toxicity) profiles. Both compounds showed higher binding affinities towards C-reactive protein (CRP), interleukin-1 (IL-1), dipeptidyl peptidase-4 (DPP-IV), peroxisome proliferator-activated receptor gamma (PPARG), protein tyrosine phosphatase (PTP), and sodium-glucose co-transporter-1 (SGLT-1) compared to metformin (the positive control). Both quercetin and kaempferol inhibited α-amylase activity (in vitro) up to 20.30 ± 0.49 and 37.43 ± 0.42%, respectively. Their oral supplementation significantly reduced blood glucose levels (p < 0.001), improved lipid profile (p < 0.001), and enhanced total antioxidant status (p < 0.01) in streptozotocin-nicotinamide (STZ-NA)-induced diabetic mice. Additionally, both compounds significantly inhibited the proliferation of Huh-7 and HepG2 (cancer cells) (p < 0.0001) with no effect on the viability of Vero cell line (non-cancer). In conclusion, quercetin and kaempferol demonstrated higher binding affinities towards multiple targets than metformin. In vitro and in vivo antidiabetic potential along with the anticancer activities of both compounds suggest promise for further development in diabetes management. The combination of both drugs did not show a synergistic effect, possibly due to their same target on the receptors.

2.
Int J Mol Sci ; 25(2)2024 Jan 05.
Article in English | MEDLINE | ID: mdl-38255803

ABSTRACT

Excessive iron levels are believed to contribute to the development of neurodegenerative disorders by promoting oxidative stress and harmful protein clustering. Novel chelation treatments that can effectively remove excess iron while minimizing negative effects on the nervous system are being explored. This study focuses on the creation and evaluation of innovative nanobubble (NB) formulations, shelled with various polymers such as glycol-chitosan (GC) and glycol-chitosan conjugated with deferoxamine (DFO), to enhance their ability to bind iron. Various methods were used to evaluate their physical and chemical properties, chelation capacity in diverse iron solutions and impact on reactive oxygen species (ROS). Notably, the GC-DFO NBs demonstrated the ability to decrease amyloid-ß protein misfolding caused by iron. To assess potential toxicity, in vitro cytotoxicity testing was conducted using organotypic brain cultures from the substantia nigra, revealing no adverse effects at appropriate concentrations. Additionally, the impact of NBs on spontaneous electrical signaling in hippocampal neurons was examined. Our findings suggest a novel nanochelation approach utilizing DFO-conjugated NBs for the removal of excess iron in cerebral regions, potentially preventing neurotoxic effects.


Subject(s)
Iron Overload , Iron , Humans , Central Nervous System , Brain , Amyloid beta-Peptides
3.
Indian J Surg Oncol ; 12(Suppl 2): 257-264, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34421277

ABSTRACT

To analyse and identify possible outcomes of elective cancer surgeries performed at a tertiary cancer centre during COVID19 pandemic. This is a retrospective study including patients that underwent surgery at HCG Manavata cancer centre, Nashik, Maharashtra, India, from 15 March 2020 to 15 June 2020. Among the 458 patients that underwent elective surgeries, 54% were male and 46% were female, with a median age of 50.57 years. The most common sites of cancer distribution were head and neck (24.67%), colorectal (11.57%), gynaecological (11.35%), and breast (10.26%). Of the included patients, 92% were of American Society of Anaesthesiologists (ASA) II with comorbidities such as hypertension, and 64% underwent major surgeries with a mortality rate of 1.52% (n = 7). Average duration of surgery and hospital stay was observed to be 168.43 min and 4.4 days, respectively. Post-operatively, 7 patients were tested COVID positive and their recovery was uneventful. Despite the difficulty that set in because of COVID19 pandemic, it was proven from our study that elective cancer care surgeries can be successfully performed by following all the set guidelines.

4.
Molecules ; 26(15)2021 Jul 29.
Article in English | MEDLINE | ID: mdl-34361743

ABSTRACT

While investigating the possible synergistic effect of the conventional anticancer therapies, which, taken individually, are often ineffective against critical tumors, such as central nervous system (CNS) ones, the design of a theranostic nanovector able to carry and deliver chemotherapy drugs and magnetic hyperthermic agents to the target radiosensitizers (oxygen) was pursued. Alongside the original formulation of polymeric biodegradable oxygen-loaded nanostructures, their properties were fine-tuned to optimize their ability to conjugate therapeutic doses of drugs (doxorubicin) or antitumoral natural substances (curcumin). Oxygen-loaded nanostructures (diameter = 251 ± 13 nm, ζ potential = -29 ± 5 mV) were finally decorated with superparamagnetic iron oxide nanoparticles (SPIONs, diameter = 18 ± 3 nm, ζ potential = 14 ± 4 mV), producing stable, effective and non-agglomerating magnetic nanovectors (diameter = 279 ± 17 nm, ζ potential = -18 ± 7 mV), which could potentially target the tumoral tissues under magnetic driving and are monitorable either by US or MRI imaging.


Subject(s)
Antibiotics, Antineoplastic/pharmacology , Chitosan/chemistry , Hyperthermia, Induced/methods , Magnetite Nanoparticles/chemistry , Radiation-Sensitizing Agents/pharmacology , Theranostic Nanomedicine/methods , Antibiotics, Antineoplastic/chemistry , Cell Line, Tumor , Cell Survival/drug effects , Cell Survival/radiation effects , Contrast Media/chemical synthesis , Contrast Media/pharmacology , Curcumin/chemistry , Curcumin/pharmacology , Dextran Sulfate/chemistry , Doxorubicin/chemistry , Doxorubicin/pharmacology , Drug Compounding/methods , Humans , Kinetics , Magnetite Nanoparticles/ultrastructure , Oxygen/chemistry , Oxygen/pharmacology , Radiation-Sensitizing Agents/chemical synthesis
5.
Cancers (Basel) ; 13(5)2021 Mar 03.
Article in English | MEDLINE | ID: mdl-33802269

ABSTRACT

Pressurized Intraperitoneal Aerosol Chemotherapy (PIPAC) is an innovative laparoscopic intraperitoneal chemotherapy approach with the advantage of a deeper tissue penetration. Thus far, oxaliplatin has been administered at an arbitrary dose of 92 mg/m2, cisplatin at 7.5 mg/m2 and doxorubicin 1.5 mg/m2. This is a model-based approach phase I dose escalation study with the aim of identifying the maximum tolerable dose of the three different drugs. The starting dose of oxaliplatin was 100 mg/m2; cisplatin was used in association with doxorubicin: 15 mg/m2 and 3 mg/m2 were the respective starting doses. Safety was assessed according to Common Terminology Criteria for Adverse Events (CTCAE version 4.03). Thirteen patients were submitted to one PIPAC procedure. Seven patients were treated with cisplatin and doxorubicin and 6 patients with oxaliplatin; no dose limiting toxicities and major side effects were found. Common adverse events included postoperative abdominal pain and nausea. The maximum tolerable dose was not reached. The highest dose treated cohort (oxaliplatin 135 mg/m2; cisplatin 30 mg/m2 and doxorubicin 6 mg/m2) tolerated PIPAC well. Serological analyses revealed no trace of doxorubicin at any dose level. Serum levels of cis- and oxaliplatin reached a peak at 60-120 min after PIPAC and were still measurable in the circulation 24 h after the procedure. Cisplatin and doxorubicin may be safely used as PIPAC at a dose of 30 mg/m2 and 6 mg/m2, respectively; oxaliplatin can be used at an intraperitoneal dose of 135 mg/m2. The dosages achieved to date are the highest ever used in PIPAC.

6.
Front Aging Neurosci ; 13: 607858, 2021.
Article in English | MEDLINE | ID: mdl-33692679

ABSTRACT

Alzheimer's disease (AD) is the most common form of dementia, characterized by a complex etiology that makes therapeutic strategies still not effective. A true understanding of key pathological mechanisms and new biomarkers are needed, to identify alternative disease-modifying therapies counteracting the disease progression. Iron is an essential element for brain metabolism and its imbalance is implicated in neurodegeneration, due to its potential neurotoxic effect. However, the role of iron in different stages of dementia is not clearly established. This study aimed to investigate the potential impact of iron both in cerebrospinal fluid (CSF) and in serum to improve early diagnosis and the related therapeutic possibility. In addition to standard clinical method to detect iron in serum, a precise quantification of total iron in CSF was performed using graphite-furnace atomic absorption spectrometry in patients affected by AD, mild cognitive impairment, frontotemporal dementia, and non-demented neurological controls. The application of machine learning techniques, such as clustering analysis and multiclassification algorithms, showed a new potential stratification of patients exploiting iron-related data. The results support the involvement of iron dysregulation and its potential interaction with biomarkers (Tau protein and Amyloid-beta) in the pathophysiology and progression of dementia.

7.
Molecules ; 25(9)2020 Apr 30.
Article in English | MEDLINE | ID: mdl-32365941

ABSTRACT

Magnetic Oxygen-Loaded Nanobubbles (MOLNBs), manufactured by adding Superparamagnetic Iron Oxide Nanoparticles (SPIONs) on the surface of polymeric nanobubbles, are investigated as theranostic carriers for delivering oxygen and chemotherapy to brain tumors. Physicochemical and cyto-toxicological properties and in vitro internalization by human brain microvascular endothelial cells as well as the motion of MOLNBs in a static magnetic field were investigated. MOLNBs are safe oxygen-loaded vectors able to overcome the brain membranes and drivable through the Central Nervous System (CNS) to deliver their cargoes to specific sites of interest. In addition, MOLNBs are monitorable either via Magnetic Resonance Imaging (MRI) or Ultrasound (US) sonography. MOLNBs can find application in targeting brain tumors since they can enhance conventional radiotherapy and deliver chemotherapy being driven by ad hoc tailored magnetic fields under MRI and/or US monitoring.


Subject(s)
Central Nervous System , Drug Carriers/chemistry , Hyperthermia, Induced , Magnetite Nanoparticles/chemistry , Theranostic Nanomedicine/methods , Animals , Brain Neoplasms/therapy , Cell Survival/drug effects , Central Nervous System/drug effects , Central Nervous System/metabolism , Chemical Phenomena , Drug Delivery Systems , Endothelial Cells/metabolism , Hemolysis , Humans , Hyperthermia, Induced/methods , Magnetic Fields
8.
Front Pharmacol ; 10: 1001, 2019.
Article in English | MEDLINE | ID: mdl-31572183

ABSTRACT

Tumor oxygenation is a critical issue for enhancing radiotherapy (RT) effectiveness. Alternating RT with hyperthermia improves tumor radiosensitivity by inducing a massive vasodilation of the neoangiogenic vasculature provided the whole tumor is properly heated. The aim of this work was to develop superparamagnetic oxygen-loaded nanobubbles (MOLNBs) as innovative theranostic hyperthermic agents to potentiate tumor oxygenation by direct intracellular oxygen administration. Magnetic oxygen-loaded nanobubbles were obtained by functionalizing dextran-shelled and perfluoropentane-cored nanobubbles with superparamagnetic iron oxide nanoparticles. Magnetic oxygen-loaded nanobubbles with sizes of about 380 nm were manufactured, and they were able to store oxygen and in vitro release it with prolonged kinetics. In vitro investigation showed that MOLNBs can increase tissue temperature when exposed to radiofrequency magnetic fields. Moreover, they are easily internalized by tumor cells, herein releasing oxygen with a sustained kinetics. In conclusion, MOLNBs can be considered a multimodal theranostic platform since, beyond their nature of contrast agent for magnetic resonance imaging due to magnetic characteristics, they showed echogenic properties and can be visualized using medical ultrasound.

9.
Materials (Basel) ; 12(3)2019 Feb 02.
Article in English | MEDLINE | ID: mdl-30717431

ABSTRACT

Magnetic Nanoparticles (MNPs) are of great interest in biomedicine, due to their wide range of applications. During recent years, one of the most challenging goals is the development of new strategies to finely tune the unique properties of MNPs, in order to improve their effectiveness in the biomedical field. This review provides an up-to-date overview of the methods of synthesis and functionalization of MNPs focusing on Iron Oxide Nanoparticles (IONPs). Firstly, synthesis strategies for fabricating IONPs of different composition, sizes, shapes, and structures are outlined. We describe the close link between physicochemical properties and magnetic characterization, essential to developing innovative and powerful magnetic-driven nanocarriers. In conclusion, we provide a complete background of IONPs functionalization, safety, and applications for the treatment of Central Nervous System disorders.

SELECTION OF CITATIONS
SEARCH DETAIL
...