Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters











Publication year range
1.
J Pharm Anal ; 11(1): 57-67, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33717612

ABSTRACT

In the present work, a chemically modified electrode has been fabricated utilizing Bi2O3/ZnO nanocomposite. The nanocomposite was synthesized by simple sonochemical method and characterized for its structural and morphological properties by using XRD, FESEM, EDAX, HRTEM and XPS techniques. The results clearly indicated co-existence of Bi2O3 and ZnO in the nanocomposite with chemical interaction between them. Bi2O3/ZnO nanocomposite based glassy carbon electrode (GCE) was utilized for sensitive voltammetric detection of an anti-biotic drug (balofloxacin). The modification amplified the electroactive surface area of the sensor, thus providing more sites for oxidation of analyte. Cyclic and square wave voltammograms revealed that Bi2O3/ZnO modified electrode provides excellent electrocatalytic action towards balofloxacin oxidation. The current exhibited a wide linear response in concentration range of 150-1000 nM and detection limit of 40.5 nM was attained. The modified electrode offered advantages in terms of simplicity of preparation, fair stability (RSD 1.45%), appreciable reproducibility (RSD 2.03%) and selectivity. The proposed sensor was applied for determining balofloxacin in commercial pharmaceutical formulations and blood serum samples with the mean recoveries of 99.09% and 99.5%, respectively.

2.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-883499

ABSTRACT

In the present work,a chemically modified electrode has been fabricated utilizing Bi2O3/ZnO nano-composite.The nanocomposite was synthesized by simple sonochemical method and characterized for its structural and morphological properties by using XRD,FESEM,EDAX,HRTEM and XPS techniques.The results clearly indicated co-existence of Bi2O3 and ZnO in the nanocomposite with chemical interaction between them.Bi2O3/ZnO nanocomposite based glassy carbon electrode(GCE)was utilized for sensitive voltammetric detection of an anti-biotic drug(balofloxacin).The modification amplified the electroactive surface area of the sensor,thus providing more sites for oxidation of analyte.Cyclic and square wave voltammograms revealed that Bi2O3/ZnO modified electrode provides excellent electrocatalytic action towards balofloxacin oxidation.The current exhibited a wide linear response in concentration range of 150-1000 nM and detection limit of 40.5 nM was attained.The modified electrode offered advantages in terms of simplicity of preparation,fair stability(RSD 1.45%),appreciable reproducibility(RSD 2.03%)and selectivity.The proposed sensor was applied for determining balofloxacin in commercial pharmaceutical formulations and blood serum samples with the mean recoveries of 99.09%and 99.5%,respectively.

3.
Anal Chim Acta ; 1046: 99-109, 2019 Jan 10.
Article in English | MEDLINE | ID: mdl-30482307

ABSTRACT

Ranolazine (RZ) is an anti-anginal drug with a distinct mechanism of action and widely employed in patients with chronic angina. Its measurement is essential in clinical environment to ensure adequate drug level and understand the redox mechanism which gives an idea of in-vivo fate of the drug. In view of this, an exemplary voltammetric approach is proposed here for determination of RZ utilizing glassy carbon electrode (GCE) fabricated with WO3 decorated graphene nanocomposite. The structural and morphological characterizations of modifier were made by employing XRD, FESEM, EDAX, HRTEM, XPS, Raman and FT-IR spectroscopy which revealed successful formation of the nanocomposite. As a result of high electrical conductivity and large effective surface area of WO3 nanoparticles and graphene nanosheets, the developed sensor WO3/Graphene/GCE displayed effectual and unrelenting electron interceding behavior exhibiting higher peak currents at lower potentials for RZ oxidation. Using square wave voltammetry, the drug showcased well-defined voltammetric response in Britton-Robinson buffer at pH 4.5 in concentration range from 0.2-1.4 µM and 1.4-14 µM with the low detection limit of 0.13 µM. The developed protocol was then implemented successfully to quantify RZ in commercially accessible pharmaceutical tablets with satisfactory recovery (99.8%-100.2%). The experimental results illustrated the applicability of the fabricated sensor for drug quality control and clinical analysis along with pharmacokinetic studies.


Subject(s)
Angiogenesis Inhibitors/analysis , Electrochemical Techniques , Graphite/chemistry , Nanocomposites/chemistry , Oxides/chemistry , Tungsten/chemistry , Molecular Structure , Particle Size , Surface Properties
4.
J Nanosci Nanotechnol ; 16(1): 439-47, 2016 Jan.
Article in English | MEDLINE | ID: mdl-27398472

ABSTRACT

Zinc oxide (ZnO)/multi walled carbon nanotubes (MWCNTs) composites based sensors with different ZnO concentrations were fabricated to improve carbon monoxide (CO) gas sensing properties in comparison to the sensors based on bare MWCNTs. To study the structure, morphology and elemental composition of the resultant products, X-ray diffraction (XRD), Field emission scanning electron microscopy (FESEM) and Energy dispersive X-ray spectroscopy (EDS) were carried out. It has been observed that as the concentration of ZnO is increased more and more ZnO nanoparticles in the form of nodes get attached to MWCNTs resulting the reduction in average diameter of MWCNTs. The typical response of ZnO/MWCNTs composites based gas sensors for different CO concentrations (40, 100, 140 and 200 ppm) was studied by using very advanced sensing setup attached to I-V measurement system. Different sensing parameters such as: resistive response, sensitivity and response time were estimated at room temperature for all the fabricated sensors. The results indicated that the sensor based on nanocomposite which has 30 mg ZnO dispersed on 20 mg MWCNTs showing highest sensitivity and fastest response. All the sensors showed response times ranging from 8 to 23 seconds. The sensing mechanism behind the sensors based on ZnO/MWCNTs nanocomposites for CO gas at room temperature is also discussed in the present report.


Subject(s)
Carbon Monoxide/analysis , Nanocomposites/chemistry , Nanotubes, Carbon/chemistry , Zinc Oxide/chemistry
5.
PLoS One ; 11(5): e0156093, 2016.
Article in English | MEDLINE | ID: mdl-27228169

ABSTRACT

Laser ablation of dental hard tissues is one of the most important laser applications in dentistry. Many works have reported the interaction of laser radiations with tooth material to optimize laser parameters such as wavelength, energy density, etc. This work has focused on determining the relationship between energy density and ablation thresholds using pulsed, 5 nanosecond, neodymium-doped yttrium aluminum garnet; Nd:Y3Al5O12 (Nd:YAG) laser at 1064 nanometer. For enamel and dentin tissues, the ablations have been performed using laser-induced breakdown spectroscopy (LIBS) technique. The ablation thresholds and relationship between energy densities and peak areas of calcium lines, which appeared in LIBS, were determined using data fitting. Furthermore, the morphological changes were studied using Scanning Electron Microscope (SEM). Moreover, the chemical stability of the tooth material after ablation has been studied using Energy-Dispersive X-Ray Spectroscopy (EDX). The differences between carbon atomic % of non-irradiated and irradiated samples were tested using statistical t-test. Results revealed that the best fitting between energy densities and peak areas of calcium lines were exponential and linear for enamel and dentin, respectively. In addition, the ablation threshold of Nd:YAG lasers in enamel was higher than that of dentin. The morphology of the surrounded ablated region of enamel showed thermal damages. For enamel, the EDX quantitative analysis showed that the atomic % of carbon increased significantly when laser energy density increased.


Subject(s)
Data Interpretation, Statistical , Dental Enamel/radiation effects , Dentin/radiation effects , Laser Therapy , Lasers , Tooth Extraction/methods , Hardness , Humans , Nanotechnology , Spectrometry, X-Ray Emission
SELECTION OF CITATIONS
SEARCH DETAIL