Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
J Med Chem ; 61(8): 3350-3369, 2018 04 26.
Article in English | MEDLINE | ID: mdl-29590750

ABSTRACT

Rhodesain (RD) is a parasitic, human cathepsin L (hCatL) like cysteine protease produced by Trypanosoma brucei ( T. b.) species and a potential drug target for the treatment of human African trypanosomiasis (HAT). A library of hCatL inhibitors was screened, and macrocyclic lactams were identified as potent RD inhibitors ( Ki < 10 nM), preventing the cell-growth of Trypanosoma brucei rhodesiense (IC50 < 400 nM). SARs addressing the S2 and S3 pockets of RD were established. Three cocrystal structures with RD revealed a noncovalent binding mode of this ligand class due to oxidation of the catalytic Cys25 to a sulfenic acid (Cys-SOH) during crystallization. The P-glycoprotein efflux ratio was measured and the in vivo brain penetration in rats determined. When tested in vivo in acute HAT model, the compounds permitted up to 16.25 (vs 13.0 for untreated controls) mean days of survival.


Subject(s)
Cathepsin L/antagonists & inhibitors , Cysteine Endopeptidases/metabolism , Cysteine Proteinase Inhibitors/pharmacology , Lactams, Macrocyclic/pharmacology , Trypanocidal Agents/pharmacology , Trypanosoma brucei rhodesiense/drug effects , Animals , Binding Sites , Blood-Brain Barrier/metabolism , Cell Line , Cysteine Endopeptidases/chemistry , Cysteine Proteinase Inhibitors/chemical synthesis , Cysteine Proteinase Inhibitors/chemistry , Cysteine Proteinase Inhibitors/pharmacokinetics , Drug Repositioning , Humans , Lactams, Macrocyclic/chemical synthesis , Lactams, Macrocyclic/chemistry , Lactams, Macrocyclic/pharmacokinetics , Ligands , Male , Mice, Inbred C57BL , Molecular Structure , Rats , Structure-Activity Relationship , Swine , Trypanocidal Agents/chemical synthesis , Trypanocidal Agents/chemistry , Trypanocidal Agents/pharmacokinetics
2.
J Med Chem ; 56(23): 9789-801, 2013 Dec 12.
Article in English | MEDLINE | ID: mdl-24224654

ABSTRACT

Starting from the weakly active dual CatS/K inhibitor 5, structure-based design supported by X-ray analysis led to the discovery of the potent and selective (>50,000-fold vs CatK) cyclopentane derivative 22 by exploiting specific ligand-receptor interactions in the S2 pocket of CatS. Changing the central cyclopentane scaffold to the analogous pyrrolidine derivative 57 decreased the enzyme as well as the cell-based activity significantly by 24- and 69-fold, respectively. The most promising scaffold identified was the readily accessible proline derivative (e.g., 79). This compound, with an appealing ligand efficiency (LE) of 0.47, included additional structural modifications binding in the S1 and S3 pockets of CatS, leading to favorable in vitro and in vivo properties. Compound 79 reduced IL-2 production in a transgenic DO10.11 mouse model of antigen presentation in a dose-dependent manner with an ED50 of 5 mg/kg.


Subject(s)
Cathepsins/antagonists & inhibitors , Cysteine Proteinase Inhibitors/chemical synthesis , Animals , Cyclopentanes/chemistry , Cysteine Proteinase Inhibitors/pharmacokinetics , Humans , Mice , Proline/analogs & derivatives , Structure-Activity Relationship
3.
ChemMedChem ; 6(11): 2048-54, 2011 Nov 04.
Article in English | MEDLINE | ID: mdl-21898833

ABSTRACT

In two series of small-molecule ligands, one inhibiting human cathepsin L (hcatL) and the other MEK1 kinase, biological affinities were found to strongly increase when an aryl ring of the inhibitors is substituted with the larger halogens Cl, Br, and I, but to decrease upon F substitution. X-ray co-crystal structure analyses revealed that the higher halides engage in halogen bonding (XB) with a backbone C=O in the S3 pocket of hcatL and in a back pocket of MEK1. While the S3 pocket is located at the surface of the enzyme, which provides a polar environment, the back pocket in MEK1 is deeply buried in the protein and is of pronounced apolar character. This study analyzes environmental effects on XB in protein-ligand complexes. It is hypothesized that energetic gains by XB are predominantly not due to water replacements but originate from direct interactions between the XB donor (Caryl-X) and the XB acceptor (C=O) in the correct geometry. New X-ray co-crystal structures in the same crystal form (space group P2(1)2(1)2(1)) were obtained for aryl chloride, bromide, and iodide ligands bound to hcatL. These high-resolution structures reveal that the backbone C=O group of Gly61 in most hcatL co-crystal structures maintains water solvation while engaging in XB. An aryl-CF3-substituted ligand of hcatL with an unexpectedly high affinity was found to adopt the same binding geometry as the aryl halides, with the CF3 group pointing to the C=O group of Gly61 in the S3 pocket. In this case, a repulsive F2C-F⋅⋅⋅O=C contact apparently is energetically overcompensated by other favorable protein-ligand contacts established by the CF3 group.


Subject(s)
Cathepsin L/metabolism , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/metabolism , Halogens/chemistry , MAP Kinase Kinase 1/metabolism , Catalytic Domain , Cathepsin L/antagonists & inhibitors , Cathepsin L/chemistry , Crystallography, X-Ray , Enzyme Inhibitors/pharmacology , Ligands , MAP Kinase Kinase 1/antagonists & inhibitors , MAP Kinase Kinase 1/chemistry , Protein Binding , Structure-Activity Relationship
5.
Bioorg Med Chem Lett ; 20(17): 5313-9, 2010 Sep 01.
Article in English | MEDLINE | ID: mdl-20650636

ABSTRACT

A series of (3R,4R)-pyrrolidine-3,4-dicarboxylic acid amides was investigated with respect to their factor Xa inhibitory activity, selectivity, pharmacokinetic properties, and ex vivo antithrombotic activity. The clinical candidate from this series, R1663, exhibits excellent selectivity against a panel of serine proteases and good pharmacokinetic properties in rats and monkeys. A Phase I clinical study with R1663 has been finalized.


Subject(s)
Factor Xa Inhibitors , Pyrrolidines/pharmacology , Pyrrolidines/chemistry
7.
Bioorg Med Chem Lett ; 14(3): 817-21, 2004 Feb 09.
Article in English | MEDLINE | ID: mdl-14741297

ABSTRACT

The synthesis and in vitro structure-activity relationships (SAR) of a series of triazoles as A(2A) receptor antagonists is reported. This resulted in the identification of potent, selective and permeable 1,2,4-triazoles such as 42 for further optimization and evaluation in vivo.


Subject(s)
Adenosine A2 Receptor Antagonists , Cell Membrane/chemistry , Triazoles/chemical synthesis , Triazoles/pharmacology , Animals , In Vitro Techniques , Molecular Structure , Rats , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...