Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 64
Filter
Add more filters










Publication year range
1.
Brain Res ; 1781: 147805, 2022 04 15.
Article in English | MEDLINE | ID: mdl-35108500

ABSTRACT

The stress experienced during rape seems to facilitate ovulation since the pregnancy rate in raped women is higher than that resulting from consensual intercourse. Adrenal progesterone, as well as central norepinephrine, is released in stressful situations. At adequate estrogenic levels, one of the main actions of progesterone is to anticipate the preovulatory LH surge through noradrenaline release. We aimed to investigate whether acute stresses that mimic those of rape (exposure to predator, restraint and cervix stimulation) applied on the proestrus morning in female rats could release progesterone, activate the noradrenergic neurons and facilitate the occurrence of the LH surge. Female rats were submitted to jugular vein cannulation immediately following acute stress: restraint (R), exposure to cat (P), uterine cervix stimulation (CS) applied individually or in association (SA). Non-stressed rats were used as control. Blood samples were collected from 11:00-18:00 h for LH, progesterone, corticosterone and estradiol measurements. Double labeling for c-Fos and tyrosine hydroxylase (TH) was examined in A1, A2 and A6 noradrenergic neurons after stresses. The SA group showed a greater stress-induced increase in progesterone compared to the other groups and the preovulatory LH surge was anticipated and amplified. This effect of SA seems to be related to the higher number of c-Fos/TH + neurons in the A1 and A2. The effect of anticipating the preovulatory surge of LH could in part elucidate why, in raped women, conception can occur in phases of the menstrual cycle other than the ovulatory phase facilitating the occurrence of pregnancies.


Subject(s)
Adrenergic Neurons , Progesterone , Animals , Estradiol/pharmacology , Female , Humans , Luteinizing Hormone , Norepinephrine , Ovulation , Pregnancy , Progesterone/pharmacology , Rats , Tyrosine 3-Monooxygenase
2.
J Photochem Photobiol B ; 194: 6-13, 2019 May.
Article in English | MEDLINE | ID: mdl-30897401

ABSTRACT

Follicular cystic ovary disease is a common reproductive disorder in women and females of domestic animals, characterized by anovulation and the persistence of follicle is a common cause of reproductive failure in mammalian. Polycystic ovary syndrome (PCOS) is characterized by hyperandrogenism (HA), chronic anovulation and polycystic ovaries, and it is a common reproductive endocrine disease with clinical manifestations including hirsutism, acne, infertility and obesity that can affect 5-20% of women in their reproductive age. Photobiomodulation (PBM) has been investigated and used in clinical practice, related to biomodulatory influences on cellular functions in animals and humans, both in vivo and in vitro. In this study, we include endocrine and reproductive features in a rat model for PCOS and the effects of PBM on ovarian activities. Forty-five adult female Wistar rats PCOS-induced by a single dose of the estradiol valerate (EV) were used in the study. After the EV injection for PCO induction, rats were divided into 9 groups (n = 5/group) named C30, C45 and C60 (Control group), S30, S45 and S60 (PCO group) and L30, L45 and L60 (PCO/Laser group). The rats were irradiated with laser 3 times/week. The results shown that EV PCO-induced rats had increased body mass, reduced ovary mass, and reduced GSI. The plasma levels of P4 and T were increased, and the LH plasma level was decreased by PBM stimulation. The number of ovarian follicles and corpus luteum were increased, and the number of ovarian cysts was decreased by PBM stimulation. Thus, reproductive and endocrine characteristics were modulated by PBM.


Subject(s)
Low-Level Light Therapy , Ovary/physiopathology , Ovary/radiation effects , Polycystic Ovary Syndrome/radiotherapy , Animals , Corpus Luteum/pathology , Corpus Luteum/radiation effects , Estrous Cycle/radiation effects , Female , Hormones/blood , Ovary/pathology , Polycystic Ovary Syndrome/blood , Polycystic Ovary Syndrome/pathology , Polycystic Ovary Syndrome/physiopathology , Rats , Rats, Wistar
3.
Andrologia ; 50(6): e13028, 2018 Aug.
Article in English | MEDLINE | ID: mdl-29744904

ABSTRACT

This study aimed to evaluate the effects of the extracted oil of Acrocomia aculeata pulp in preventing or mitigating the reproductive toxicity induced by cyclophosphamide (CP) in male rats. Adult male rats were segregated into seven groups that received vehicle, 100 mg/kg/day of CP, or 10 mg/kg/day of ß-carotene or 3 or 30 mg/kg/day of A. aculeata oil co-administered with CP. A. aculeata oil exhibited a high content of ß-carotene. CP treatment induced reproductive toxicity in the animals, as it changed the reproductive organs weight, hormone levels, sperm counts and testicular histology. In contrast, co-administration of A. aculeata improved CP-induced alterations in these parameters. A. aculeata oil also increased the gene Ckit expression and normalised the antioxidant enzymes levels which were changed by CP. The A. aculeata oil is capable of protecting the male reproductive system from the adverse effects of CP, possibly by acting as an antioxidant and increasing the Ckit gene expression.


Subject(s)
Arecaceae/chemistry , Cyclophosphamide/toxicity , Plant Oils/pharmacology , Reproduction/drug effects , Spermatozoa/drug effects , Testis/drug effects , Animals , Antioxidants/pharmacology , Male , Proto-Oncogene Proteins c-kit/metabolism , Rats , Rats, Wistar , beta Carotene/pharmacology
4.
Neuroscience ; 313: 36-45, 2016 Jan 28.
Article in English | MEDLINE | ID: mdl-26601772

ABSTRACT

The locus coeruleus (LC) has been suggested as a CO2 chemoreceptor site in mammals. Most of the studies involving the role of the LC in hypercapnic ventilatory responses have been performed in males. Since ovarian steroids modulate the activity of LC neurons and females have a different respiratory response to CO2 than males, we evaluated the activity of LC noradrenergic neurons during normocapnia and hypercapnia in female and male rats with distinct sex hormone levels. Ovariectomized (OVX), estradiol (E2)-treated ovariectomized (OVX+E2) and female rats on the diestrous day of the estrous cycle were evaluated. Concurrently, males were investigated as gonad-intact, orchidectomized (ORX), testosterone (T)-treated ORX (ORX+T), and E2-treated ORX (ORX+E2). Activation of LC neurons was determined by double-label immunohistochemistry to c-Fos and tyrosine hydroxylase (TH). Hypercapnia induced by 7% CO2 increased the number of c-Fos/TH-immunoreactive (ir) neurons in the LC of all groups when compared to air exposure. Hypercapnia-induced c-Fos expression did not differ between diestrous females and intact male rats. In the OVX+E2 group, there was attenuation in the c-Fos expression during normocapnia compared with OVX rats, but CO2 responsiveness was not altered. Moreover, in ORX rats, neither T nor E2 treatments changed c-Fos expression in LC noradrenergic neurons. Thus, in female rats, E2 reduces activation of LC noradrenergic neurons, whereas in males, sex hormones do not influence the LC activity.


Subject(s)
Gonadal Steroid Hormones/metabolism , Hypercapnia/physiopathology , Locus Coeruleus/physiology , Sex Characteristics , Air , Animals , Carbon Dioxide/administration & dosage , Carbon Dioxide/metabolism , Castration , Disease Models, Animal , Female , Gonadal Steroid Hormones/administration & dosage , Immunohistochemistry , Male , Neurons/physiology , Proto-Oncogene Proteins c-fos/metabolism , Rats, Wistar , Tyrosine 3-Monooxygenase/metabolism
5.
J Neuroendocrinol ; 27(2): 88-99, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25453900

ABSTRACT

Prolactin (PRL) secretion is inhibited by hypothalamic dopamine. Kisspeptin controls luteinising hormone (LH) secretion and is also involved in PRL regulation. We further investigated the effect of kisspeptin-10 (Kp-10) on the activity of tuberoinfundibular dopaminergic (TIDA) neurones and the role of oestradiol (E2 ) in this mechanism. Female and male rats were injected with i.c.v. Kp-10 and evaluated for PRL release and the activity of dopamine terminals in the median eminence (ME) and neurointermediate lobe of the pituitary (NIL). Kp-10 at the doses of 0.6 and 3 nmol increased plasma PRL and decreased 4-dihydroxyphenylacetic acid (DOPAC) levels in the ME and NIL of ovariectomised (OVX), E2 -treated rats but had no effect in OVX. In gonad-intact males, 3 nmol Kp-10 increased PRL secretion and decreased DOPAC levels in the ME but not in the NIL. Castrated males treated with either testosterone or E2 also displayed increased PRL secretion and reduced ME DOPAC in response to Kp-10, whereas castrated rats receiving oil or dihydrotestosterone were unresponsive. By contrast, the LH response to Kp-10 was not E2 -dependent in either females or males. Additionally, immunohistochemical double-labelling demonstrated that TIDA neurones of male rats contain oestrogen receptor (ER)-α, with a higher proportion of neurones expressing ERα than in dioestrous females. The dopaminergic neurones of periventricular hypothalamic nucleus displayed much lower ERα expression. Thus, TIDA neurones express ERα in male and female rats, and kisspeptin increases PRL secretion through inhibition of TIDA neurones in an E2 -dependent manner in both sexes. These findings provide new evidence about the role of kisspeptin in the regulation of dopamine and PRL.


Subject(s)
Arcuate Nucleus of Hypothalamus/metabolism , Dopaminergic Neurons/metabolism , Estradiol/metabolism , Kisspeptins/physiology , Prolactin/metabolism , Animals , Female , Luteinizing Hormone/metabolism , Male , Rats
6.
Zygote ; 23(4): 475-84, 2015 Aug.
Article in English | MEDLINE | ID: mdl-24666604

ABSTRACT

The aim of this study was to evaluate the influence of two-dimensional (2D) and three-dimensional (3D) alginate culture systems on in vitro development of pre-antral caprine follicles. In addition, the influence of the reproductive age of the ovary donor on the in vitro culture success was investigated. Pre-antral follicles from pre-pubertal or adult goats were isolated and cultured directly on a plastic surface (2D) or encapsulated in an alginate-based matrix (3D). After 18 days, the oocytes underwent in vitro maturation (IVM) and in vitro fertilization (IVF) to produce embryos. The 3D system showed higher rates of follicle survival, lower rates of oocyte extrusion, and a greater number of recovered oocytes for IVM and IVF (P < 0.05). Only pre-antral follicles from adult animals produced MII oocytes and embryos. The estradiol concentrations increased from day 2 to day 12 of culture in all groups tested (P < 0.05). Conversely, progesterone concentrations were lower in 3D-cultured follicles than in 2D-cultured follicles, with differences on days 2 and 6 of culture (P < 0.05). We provide compelling evidence that a 2D or 3D alginate in vitro culture system offers a promising approach to achieving full in vitro development of caprine pre-antral follicles to produce mature oocytes that are capable of fertilization and viable embryos.


Subject(s)
Cell Culture Techniques/methods , Oocytes/physiology , Ovarian Follicle/growth & development , Age Factors , Alginates , Animals , Cell Culture Techniques/instrumentation , Cell Survival , Estradiol/metabolism , Female , Fertilization in Vitro , Glucuronic Acid , Goats , Hexuronic Acids , In Vitro Oocyte Maturation Techniques/methods , Male , Oocytes/cytology , Ovarian Follicle/physiology , Puberty
7.
Neurochem Res ; 39(12): 2351-9, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25217965

ABSTRACT

The first 2 weeks of life in rats are known as the stress hyporesponsive period because stress responses in pups are diminished as compared to adult animals. However, it is considered a critical period in development in which infant rats are susceptible to environmental events, such as stressful stimuli and quality of maternal care received. These early life events have long-lasting effects, shaping a variety of outcomes, such as stress responsivity. This study investigated the effects of maternal care and sex differences on the response to an aversive stimulus in rat pups from high (HL) and low licking (LL) mothers. Plasma corticosterone, oxytocin (OT), and central monoaminergic activity in 13-day-old rats submitted to cold stress were analyzed. Stress increased plasma corticosterone and marginally decreased hypothalamic dihydroxyphenylacetic acid/dopamine ratio. HL pups showed higher levels of plasma OT than LL pups. The maternal effect was also detected in the hippocampus, in which 5-hydroxyindole-3-acetic acid/serotonin ratio was increased in HL pups, independently of the sex and stress. Investigating the early life events is useful not only into understand the neurobiological and hormonal mechanisms underlying maternal and stressful influences on infant development into a healthy or psychopathological adult phenotype, but also to unveil the immediate outcomes on infancy.


Subject(s)
Behavior, Animal , Biogenic Monoamines/physiology , Hormones/physiology , Stress, Physiological , Animals , Animals, Newborn , Corticosterone/blood , Female , Oxytocin/blood , Pregnancy , Radioimmunoassay , Rats , Rats, Wistar
8.
Neurochem Res ; 2014 Sep 27.
Article in English | MEDLINE | ID: mdl-25261216

ABSTRACT

The first 2 weeks of life in rats are known as the stress hyporesponsive period because stress responses in pups are diminished as compared to adult animals. However, it is considered a critical period in development in which infant rats are susceptible to environmental events, such as stressful stimuli and quality of maternal care received. These early life events have long-lasting effects, shaping a variety of outcomes, such as stress responsivity. This study investigated the effects of maternal care and sex differences on the response to an aversive stimulus in rat pups from high (HL) and low licking (LL) mothers. Plasma corticosterone, oxytocin, and central monoaminergic activity in 13-day-old rats submitted to cold stress were analyzed. Stress increased plasma corticosterone and marginally decreased hypothalamic dihydroxyphenylacetic acid/dopamine (DOPAC/DA) ratio. HL pups showed higher levels of plasma oxytocin than LL pups. The maternal effect was also detected in the hippocampus, in which 5-hydroxyindole-3-acetic acid/serotonin (5-HIAA/5-HT) ratio was increased in HL pups, independently of the sex and stress. Investigating the early life events is useful not only into understand the neurobiological and hormonal mechanisms underlying maternal and stressful influences on infant development into a healthy or psychopathological adult phenotype, but also to unveil the immediate outcomes on infancy.

9.
Psychoneuroendocrinology ; 49: 130-40, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25080405

ABSTRACT

Perimenopause, a transition period that precedes menopause, is characterized by neuroendocrine, metabolic and behavioral changes, and is associated with increased vulnerability to affective disorders. The decrease in ovarian follicles during perimenopause contributes to a dynamic and complex hormonal milieu that is not yet well characterized. In rodents, 4-vinylcyclohexene diepoxide (VCD) induces a gradual depletion of ovarian follicles, modeling the transition to menopause in women. This study was aimed to investigate, in VCD-treated rats, the hormonal status and the behavior in the elevated plus-maze (EPM), a widely used test to assess anxiety-like behavior. From the postnatal day 28, rats were treated with VCD or vehicle for 15 days. At 80±5 days after the beginning of treatment the experiments were performed at proestrus and diestrus. In the first experiment rats were decapitated, ovary was collected and blood samples were taken for estradiol, progesterone, follicle stimulant hormone (FSH), testosterone, dihydrotestosterone (DHT) and corticosterone measurements. In the second experiment, rats were subjected to the EPM for 5 min, and behavioral categories recorded. Administration of VCD induced follicular depletion as well as an increase of the number of atretic follicles demonstrating the treatment efficacy. The transitional follicular depletion was accompanied by lower progesterone, testosterone and DHT with no changes in the FSH, estradiol and corticosterone plasma levels. On the EPM, rats showed decreased open arm exploration and increased risk assessment behavior, indicating increased anxiety. These findings show that administration of VCD to induce ovarian failure results in endocrine and anxiety-related changes that are similar to the symptoms exhibited by women during menopause transition. Thus, this model seems to be promising in the study of perimenopause-related changes.


Subject(s)
Anxiety/chemically induced , Cyclohexenes/toxicity , Ovarian Follicle/drug effects , Perimenopause/drug effects , Perimenopause/psychology , Vinyl Compounds/toxicity , Animals , Anxiety/blood , Corticosterone/blood , Dihydrotestosterone/blood , Disease Models, Animal , Estradiol/blood , Estrous Cycle/blood , Female , Follicle Stimulating Hormone/blood , Maze Learning/drug effects , Perimenopause/blood , Primary Ovarian Insufficiency/chemically induced , Progesterone/blood , Rats , Testosterone/blood
10.
Horm Metab Res ; 45(8): 586-92, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23549673

ABSTRACT

It is known that during sex differentiation, fetal androgens are critical determinants of the male phenotype. Although testosterone is necessary for normal development of male sexual behavior, perinatal androgen treatment can result in disruption of normal male sexual reproduction. Pregnant Wistar rats were administered either corn oil (vehicle) or testosterone propionate at 0.2 mg/kg from gestational day 12 until the end of lactation and the reproductive function of male offspring was evaluated at 90 (adulthood) and 270 (middle age) days of age. Perinatal androgenization in the rat provoked a reduction in sperm production and reserves in adulthood that did not affect fertility and did not persist at more advanced ages, as shown by the results at post-natal day 270. If perinatal androgenization promotes similar effects in humans of reproductive age, the results of the present work can impact male reproduction health, given the less efficient spermatogenesis and lower sperm reserves in the human epididymis, compared to rodents.


Subject(s)
Androgens/metabolism , Prenatal Exposure Delayed Effects/physiopathology , Reproduction , Testosterone/metabolism , Animals , Female , Fertility , Humans , Male , Perinatal Care , Pregnancy , Prenatal Exposure Delayed Effects/metabolism , Rats , Rats, Wistar , Sexual Development , Sperm Count , Spermatozoa/cytology , Spermatozoa/metabolism , Time
11.
Stress ; 16(4): 452-60, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23425221

ABSTRACT

Adrenal progesterone secretion increases along with corticosterone in response to stress in male and female rats to modulate some stress responses. Here we investigated the role of sex steroids in sex differences in the progesterone response to 60 min of restraint stress in adult male and female rats. Comparisons between males and females in the progesterone response were evaluated in parallel with corticosterone responses. From day 5 to 7 after gonadectomy, female and male rats were treated with estradiol or testosterone, respectively (OVX-E and ORCH-T groups), or oil (OVX and ORCH groups). Female rats in proestrus, intact and 7 d adrenalectomized (ADX) male rats were also studied. At 10:00 h, blood samples were withdrawn via an implanted jugular cannula before (-5 min), during (15, 30, 45, 60 min) and after (90 and 120 min) restraint stress to measure plasma progesterone and corticosterone concentrations by radioimmunoassay. Intact male and proestrus female rats exhibited similar progesterone responses to stress. Gonadectomy did not alter the amount of progesterone secreted during stress in female rats but decreased secretion in male rats. Unlike corticosterone, the progesterone response to stress in females was not influenced by estradiol. In males, testosterone replacement attenuated the progesterone and corticosterone responses to stress. Basal secretion of progesterone among intact, ORCH and ADX males was similar, but ADX-stressed rats secreted little progesterone. Hence, the gonads differently modulate adrenal progesterone and corticosterone responses to stress in female and male rats. The ovaries enhance corticosterone but not progesterone secretion, while the testes stimulate progesterone but not corticosterone secretion.


Subject(s)
Corticosterone/metabolism , Estradiol/pharmacology , Progesterone/metabolism , Restraint, Physical/psychology , Stress, Psychological , Testosterone/pharmacology , Adrenalectomy , Animals , Female , Male , Orchiectomy , Ovariectomy , Ovary/physiology , Proestrus , Rats , Rats, Wistar , Sex Characteristics , Testis/physiology
12.
J Neuroendocrinol ; 25(1): 23-33, 2013 Jan.
Article in English | MEDLINE | ID: mdl-22882492

ABSTRACT

Cold stress-induced ovarian sympathetic activation is associated with the development of ovarian cysts in rats. Although we have hypothesised that polycystic ovary (PCO) features induced by cold stress, as prevented by lesion of the noradrenergic nucleus locus coeruleus (LC), were a result of the increased activity of the ovarian norepinephrine (NE) system, this was not evident after 8 weeks of stress. In the present study, we investigated the temporal changes in LC and ovarian NE activities and steroid secretion in rats exposed to single (SS) or repeated (RS) cold stress. SS and 4 week (4W)-RS but not 8 week (8W)-RS increased c-Fos expression in the LC and ovarian NE release. Plasma oestradiol, testosterone and progesterone levels tended to increase in 4W-RS and were elevated in 8W-RS rats, which displayed PCO morphology. ß-adrenergic receptor agonist increased steroid hormone release from the ovary of unstressed (US) but not from 8W-RS rats. To determine whether increased activity of noradrenergic system during the initial 4 weeks of RS would be sufficient to promote PCO, rats were exposed to 4 weeks of cold stress and kept in ambient temperature for the next 4 weeks (4W-RS/4W-US). Accordingly, PCO morphology, increased steroid secretion and decreased ovulation rate were found in 4W-RS/4W-US rats, strengthening the hypothesis that the initial increase in NE release triggers the development of PCO. The correlated activity of LC neurones and ovarian noradrenergic terminals and the induction of PCO in 4W-RS/4W-US rats provide functional evidence for a major role of NE in disrupting follicular development and causing the long-lasting endocrine abnormalities found in stress-induced PCO.


Subject(s)
Cold Temperature/adverse effects , Locus Coeruleus/metabolism , Norepinephrine/metabolism , Ovary/metabolism , Polycystic Ovary Syndrome/metabolism , Stress, Physiological/physiology , Animals , Estradiol/blood , Female , Locus Coeruleus/physiopathology , Neurons/metabolism , Ovary/physiopathology , Polycystic Ovary Syndrome/etiology , Polycystic Ovary Syndrome/physiopathology , Progesterone/blood , Rats , Rats, Wistar , Sympathetic Nervous System/metabolism , Sympathetic Nervous System/physiopathology , Testosterone/blood
13.
J Neuroendocrinol ; 23(11): 1134-8, 2011 Nov.
Article in English | MEDLINE | ID: mdl-21696473

ABSTRACT

Opioid peptides play an important role in maternal behaviour, as well as in physiological and pathological phenomena involving motivation. Daily 3.5 mg/kg doses of morphine from days 17-21 of pregnancy are able to change the expression of maternal behaviour patterns. However, the role of hormones on such opioid behavioural actions remains to be determined. The present study investigated the endocrine responses to this morphine treatment. Corticosterone, progesterone, oestradiol and prolactin serum concentrations were measured after each morphine injection. No significant differences were found in corticosterone, oestradiol or prolactin serum concentrations. The results suggest that the treatment was unable to promote different effects, other than those caused by saline injections. In morphine-treated animals, however, progesterone concentrations were consistently and significantly increased from days 18-20 of treatment. Thus, because this behavioural meaningful opioidergic stimulation during late pregnancy affects progesterone levels, the findings of the present study raise the hypothesis that this hormone may play a role in morphine-induced changes in opioid sensitivity during late pregnancy and early lactation.


Subject(s)
Morphine/pharmacology , Opioid Peptides/pharmacology , Postpartum Period , Progesterone/physiology , Animals , Female , Male , Radioimmunoassay
14.
Behav Brain Res ; 217(2): 416-23, 2011 Mar 01.
Article in English | MEDLINE | ID: mdl-21074571

ABSTRACT

INTRODUCTION: Cognitive and attentional deficits in schizophrenia include impairment of the sensorimotor filter as measured by prepulse inhibition (PPI). In this way, the study of animals that naturally present low PPI responses could be a useful approach for screening new antipsychotic drugs. Several pieces of evidence suggest that dopamine and nitric oxide (NO) can modulate PPI but their role in those animals is unknown. OBJECTIVES: The aim of this study was to investigate the role of dopamine and NO in Wistar rats with naturally low PPI response. METHODS: Male Wistar rats with low PPI responses received an i.p. injection of the antipsychotics haloperidol (0.1, 0.3 or 1mg/kg) or clozapine (0.5, 1.5 or 5mg/kg), the anxiolytic diazepam (1 or 3mg/kg) or the NO synthase (NOS) inhibitors, N(G)- nitro-l-arginine (l-NOARG; 40mg/kg, acutely or sub-chronically) or 7-Nitroindazole (7-NI; 3, 10 or 30mg/kg). All animals were submitted to the PPI test 1h after injection. Striatal and cortical dopamine, DOPAC, and noradrenaline levels of rats with low PPI responses were compared to rats with normal PPI responses. RESULTS: We found increased levels of catecholamines on the striatum and prefrontal cortex of Wistar rats with low PPI. In these animals, both antipsychotics, typical and atypical, and NOS inhibitors significantly increased PPI. CONCLUSION: Taken together, our findings suggest that the low PPI phenotype may be driven by an overactive catecholamine system. Additionally, our results corroborate the hypothesis of dopamine and NO interaction on PPI modulation and suggest that Wistar rats with low PPI may represent an interesting non-pharmacological model to evaluate new potential antipsychotics.


Subject(s)
Enzyme Inhibitors/pharmacology , Indazoles/pharmacology , Inhibition, Psychological , Nitroarginine/pharmacology , Reflex, Startle/drug effects , Acoustic Stimulation/adverse effects , Analysis of Variance , Animals , Anticonvulsants/pharmacology , Behavior, Animal/drug effects , Biogenic Monoamines/metabolism , Brain/drug effects , Brain/metabolism , Diazepam/pharmacology , Dopamine Antagonists/pharmacology , Dose-Response Relationship, Drug , Drug Interactions , Exploratory Behavior/drug effects , Haloperidol/pharmacology , Male , Nitric Oxide Synthase/antagonists & inhibitors , Nitric Oxide Synthase/metabolism , Rats , Rats, Wistar
15.
J Neuroendocrinol ; 22(10): 1052-60, 2010 Oct.
Article in English | MEDLINE | ID: mdl-20722974

ABSTRACT

A secretory surge of prolactin occurs on the afternoon of oestrus in cycling rats. Pituitary prolactin is inhibited by dopamine. We evaluated the activity of the neuroendocrine dopaminergic neurones during oestrus and dioestrus, as determined by dopaminergic activity in the median eminence and neurointermediate lobe of the pituitary, as well as Fos-related antigen expression in tyrosine hydroxylase (TH)-immunoreactive (ir) neurones of the arcuate nucleus (ARC) and periventricular nucleus (Pe). During oestrus, the 4-dihydroxyphenylacetic acid/dopamine ratio in the median eminence decreased at 16.00 h, coinciding with the increase in plasma prolactin levels. Similarly, the expression of Fos-related antigen in TH-ir neurones of Pe and rostral-, dorsomedial- and caudal-ARC also decreased at 16.00 h. On dioestrus, 4-dihydroxyphenylacetic acid/dopamine ratio in the median eminence and Fos-related antigen expression in TH-ir neurones of Pe and rostral-ARC decreased at 18.00 h, whereas prolactin levels were unaltered. No variation in dopaminergic activity was found in the neurointermediate lobe of the pituitary on either oestrus or dioestrus. The number of TH-ir neurones in the ARC and parameters of dopaminergic activity were found to be generally lower on oestrus compared to dioestrus. The transitory decrease in the activity of neuroendocrine dopaminergic neurones temporally associated with the prolactin surge on the afternoon of oestrus suggests a role for dopamine in the generation of the oestrous prolactin surge.


Subject(s)
Dopamine/metabolism , Estrus/physiology , Hypothalamus/cytology , Neurons/metabolism , Prolactin/metabolism , Animals , Diestrus/physiology , Female , Median Eminence/metabolism , Neurons/cytology , Prolactin/blood , Proto-Oncogene Proteins c-fos/metabolism , Rats , Rats, Wistar , Tyrosine 3-Monooxygenase/metabolism
16.
Braz. j. med. biol. res ; 43(1): 85-95, Jan. 2010. ilus
Article in English | LILACS | ID: lil-535638

ABSTRACT

The objective of the present study was to determine whether lesion of the subthalamic nucleus (STN) promoted by N-methyl-D-aspartate (NMDA) would rescue nigrostriatal dopaminergic neurons after unilateral 6-hydroxydopamine (6-OHDA) injection into the medial forebrain bundle (MFB). Initially, 16 mg 6-OHDA (6-OHDA group) or vehicle (artificial cerebrospinal fluid - aCSF; Sham group) was infused into the right MFB of adult male Wistar rats. Fifteen days after surgery, the 6-OHDA and SHAM groups were randomly subdivided and received ipsilateral injection of either 60 mM NMDA or aCSF in the right STN. Additionally, a control group was not submitted to stereotaxic surgery. Five groups of rats were studied: 6-OHDA/NMDA, 6-OHDA/Sham, Sham/NMDA, Sham/Sham, and Control. Fourteen days after injection of 6-OHDA, rats were submitted to the rotational test induced by apomorphine (0.1 mg/kg, ip) and to the open-field test. The same tests were performed again 14 days after NMDA-induced lesion of the STN. The STN lesion reduced the contralateral turns induced by apomorphine and blocked the progression of motor impairment in the open-field test in 6-OHDA-treated rats. However, lesion of the STN did not prevent the reduction of striatal concentrations of dopamine and metabolites or the number of nigrostriatal dopaminergic neurons after 6-OHDA lesion. Therefore, STN lesion is able to reverse motor deficits after severe 6-OHDA-induced lesion of the nigrostriatal pathway, but does not protect or rescue dopaminergic neurons in the substantia nigra pars compacta.


Subject(s)
Animals , Male , Rats , Dopamine/physiology , Motor Activity/drug effects , Neurons/pathology , Parkinson Disease, Secondary/pathology , Substantia Nigra/cytology , Subthalamic Nucleus/injuries , Immunohistochemistry , Motor Activity/physiology , N-Methylaspartate , Neurons/drug effects , Neurons/physiology , Pharmaceutical Vehicles , Parkinson Disease, Secondary/chemically induced , Parkinson Disease, Secondary/physiopathology , Random Allocation , Rats, Wistar , Substantia Nigra/physiopathology , Subthalamic Nucleus/drug effects , Subthalamic Nucleus/pathology , Subthalamic Nucleus/surgery , /metabolism
17.
Braz J Med Biol Res ; 43(1): 85-95, 2010 Jan.
Article in English | MEDLINE | ID: mdl-19967265

ABSTRACT

The objective of the present study was to determine whether lesion of the subthalamic nucleus (STN) promoted by N-methyl-D-aspartate (NMDA) would rescue nigrostriatal dopaminergic neurons after unilateral 6-hydroxydopamine (6-OHDA) injection into the medial forebrain bundle (MFB). Initially, 16 mg 6-OHDA (6-OHDA group) or vehicle (artificial cerebrospinal fluid - aCSF; Sham group) was infused into the right MFB of adult male Wistar rats. Fifteen days after surgery, the 6-OHDA and SHAM groups were randomly subdivided and received ipsilateral injection of either 60 mM NMDA or aCSF in the right STN. Additionally, a control group was not submitted to stereotaxic surgery. Five groups of rats were studied: 6-OHDA/NMDA, 6-OHDA/Sham, Sham/NMDA, Sham/Sham, and Control. Fourteen days after injection of 6-OHDA, rats were submitted to the rotational test induced by apomorphine (0.1 mg/kg, ip) and to the open-field test. The same tests were performed again 14 days after NMDA-induced lesion of the STN. The STN lesion reduced the contralateral turns induced by apomorphine and blocked the progression of motor impairment in the open-field test in 6-OHDA-treated rats. However, lesion of the STN did not prevent the reduction of striatal concentrations of dopamine and metabolites or the number of nigrostriatal dopaminergic neurons after 6-OHDA lesion. Therefore, STN lesion is able to reverse motor deficits after severe 6-OHDA-induced lesion of the nigrostriatal pathway, but does not protect or rescue dopaminergic neurons in the substantia nigra pars compacta.


Subject(s)
Dopamine/physiology , Motor Activity/drug effects , Neurons/pathology , Parkinson Disease, Secondary/pathology , Substantia Nigra/cytology , Subthalamic Nucleus/injuries , Animals , Immunohistochemistry , Male , Motor Activity/physiology , N-Methylaspartate , Neurons/drug effects , Neurons/physiology , Parkinson Disease, Secondary/chemically induced , Parkinson Disease, Secondary/physiopathology , Pharmaceutical Vehicles , Random Allocation , Rats , Rats, Wistar , Substantia Nigra/physiopathology , Subthalamic Nucleus/drug effects , Subthalamic Nucleus/pathology , Subthalamic Nucleus/surgery , Tyrosine 3-Monooxygenase/metabolism
18.
J Neuroendocrinol ; 21(10): 805-12, 2009 Oct.
Article in English | MEDLINE | ID: mdl-19686440

ABSTRACT

Noradrenaline has been shown to modulate the ovarian-steroid feedback on luteinising-hormone (LH) release. However, despite the high amount of evidence accumulated over many years, the role of noradrenaline in LH regulation is still not clearly understood. The present study aimed to further investigate the involvement of noradrenaline in the negative-feedback effect of oestradiol and progesterone on basal LH secretion. In experiment 1, ovariectomised (OVX) rats received a single injection of oil, oestradiol, or progesterone at 09.00-10.00 h and were decapitated 30 or 60 min later. Levels of noradrenaline and its metabolite, 3-methoxy-4-hydroxyphenylglycol (MHPG), were determined in microdissections of the preoptic area (POA) and medial basal hypothalamus-median eminence (MBH-ME) and correlated with LH secretion. Basal LH levels were decreased 30 and 60 min after oestradiol or progesterone injection, and this hormonal response was significantly correlated with a reduction in POA MHPG levels, which reflect noradrenaline release. In addition, noradrenaline levels in the POA were increased, whereas noradrenaline turnover (MHPG/noradrenaline ratio) was decreased 60 min after the injection of both hormones. No effect was found in the MBH-ME. In experiment 2, i.c.v. administration of noradrenaline (60 nmol), performed 15 min before oestradiol or progesterone injection in jugular vein-cannulated OVX rats, completely prevented the ovarian steroid-induced inhibition of LH secretion. The data obtained provide direct evidence that LH secretion in OVX rats is positively regulated by basal noradrenergic activity in the POA, and its reduction appears to play a role in the negative-feedback effect of ovarian steroids on LH secretion in vivo.


Subject(s)
Estradiol/metabolism , Feedback, Physiological/physiology , Luteinizing Hormone/metabolism , Norepinephrine/metabolism , Progesterone/metabolism , Animals , Female , Hypothalamus/metabolism , Median Eminence/metabolism , Methoxyhydroxyphenylglycol/metabolism , Ovariectomy , Preoptic Area/metabolism , Rats , Rats, Wistar , Time Factors
19.
J Neuroendocrinol ; 21(7): 629-39, 2009 Jul.
Article in English | MEDLINE | ID: mdl-19490365

ABSTRACT

The noradrenergic nucleus locus coeruleus (LC) has been reported to regulate luteinising hormone (LH) secretion in female rats. Both oestrogen and progestin receptors have been demonstrated in LC neurones, suggesting that these cells are possibly responsive to variations in circulating levels of ovarian steroids. We therefore evaluated changes in the activity of LC neurones during the oestrous cycle and after ovarian-steroid treatment in ovariectomised (OVX) rats, as determined by immunoreactivity to Fos-related antigens (FRA), which comprises all of the known members of the Fos family. Effects of ovarian steroids on the firing rate of LC neurones were also determined in a slice preparation. The number of FRA/tyrosine hydroxylase (TH)-immunoreactive (ir) neurones in the LC increased from 14.00-16.00 h on pro-oestrus, coinciding with the onset of the LH surge and rise in plasma progesterone. FRA immunoreactivity was unaltered during dioestrus. Oestradiol-treated OVX rats (OVX+E) displayed marked reduction in FRA/TH-ir neurones in LC compared to oil-treated OVX rats. Accordingly, oestradiol superfusion significantly reduced the spontaneous firing rate of LC neurones in slices from OVX rats. Compared to OVX+E, oestradiol-treated rats injected with progesterone at 08.00 h (OVX+EP) exhibited higher number of FRA/TH-ir neurones in the LC at 10.00 h and 16.00 h, and great amplification of the LH surge. Bath application of progesterone significantly increased the spontaneous firing rate of OVX+E LC neurones. Our data suggest that ovarian steroids may physiologically modulate the activity of LC neurones in females, with possible implications for LH secretion. Moreover, oestradiol and progesterone appear to exert opposite and complementary effects (i.e. whereas oestradiol inhibits, progesterone, after oestradiol priming, stimulates LC activity).


Subject(s)
Estrogens/metabolism , Estrous Cycle/physiology , Locus Coeruleus/physiology , Luteinizing Hormone/metabolism , Neurons/physiology , Progesterone/metabolism , Action Potentials , Animals , Estradiol/pharmacology , Estrogens/pharmacology , Female , In Vitro Techniques , Locus Coeruleus/drug effects , Neurons/drug effects , Ovariectomy , Progesterone/blood , Progesterone/pharmacology , Progestins/pharmacology , Proto-Oncogene Proteins c-fos/metabolism , Rats , Rats, Wistar , Time Factors , Tyrosine 3-Monooxygenase/metabolism
20.
Neuroscience ; 153(4): 1309-19, 2008 Jun 02.
Article in English | MEDLINE | ID: mdl-18455317

ABSTRACT

The prefrontal cortex is continuously required for working memory processing during wakefulness, but is particularly hypoactivated during sleep and in psychiatric disorders such as schizophrenia. Ammon's horn CA1 hippocampus subfield (CA1) afferents provide a functional modulatory path that is subjected to synaptic plasticity and a prominent monoaminergic influence. However, little is known about the muscarinic cholinergic effects on prefrontal synapses. Here, we investigated the effects of the muscarinic agonist, pilocarpine (PILO), on the induction and maintenance of CA1-medial prefrontal cortex (mPFC) long-term potentiation (LTP) as well as on brain monoamine levels. Field evoked responses were recorded in urethane-anesthetized rats during baseline (50 min) and after LTP (130 min), and compared with controls. LTP was induced 20 min after PILO administration (15 mg/kg, i.p.) or vehicle (NaCl 0.15 M, i.p.). In a separate group of animals, the hippocampus and mPFC were microdissected 20 min after PILO injection and used to quantify monoamine levels. Our results show that PILO potentiates the late-phase of mPFC LTP without affecting either post-tetanic potentiation or early LTP (20 min). This effect was correlated with a significant decrease in relative delta (1-4 Hz) power and an increase in sigma (10-15 Hz) and gamma (25-40 Hz) powers in CA1. Monoamine levels were specifically altered in the mPFC. We observed a decrease in dopamine, 5-HT, 5-hydroxyindolacetic acid and noradrenaline levels, with no changes in 3,4-hydroxyphenylacetic acid levels. Our data, therefore, suggest that muscarinic activation exerts a boosting effect on mPFC synaptic plasticity and possibly on mPFC-dependent memories, associated to monoaminergic changes.


Subject(s)
Acetylcholine/metabolism , Biogenic Monoamines/metabolism , Hippocampus/physiology , Long-Term Potentiation/physiology , Prefrontal Cortex/physiology , Synaptic Transmission/physiology , Analysis of Variance , Animals , Chromatography, High Pressure Liquid/methods , Electric Stimulation/methods , Electrochemistry/methods , Electroencephalography , Hippocampus/radiation effects , In Vitro Techniques , Long-Term Potentiation/radiation effects , Male , Muscarinic Agonists/pharmacology , Neural Pathways/physiology , Neural Pathways/radiation effects , Pilocarpine/pharmacology , Prefrontal Cortex/radiation effects , Rats , Spectrum Analysis/methods , Synaptic Transmission/drug effects , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...