Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Glob Chang Biol ; 30(7): e17394, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38988095

ABSTRACT

Water-logged peatlands store tremendous amounts of soil carbon (C) globally, accumulating C over millennia. As peatlands become disturbed by human activity, these long-term C stores are getting destabilized and ultimately released as greenhouse gases that may exacerbate climate change. Oxidation of the dissolved organic carbon (DOC) mobilized from disturbed soils to streams and canals may be one avenue for the transfer of previously stored, millennia-aged C to the atmosphere. However, it remains unknown whether aged peat-derived DOC undergoes oxidation to carbon dioxide (CO2) following disturbance. Here, we use a new approach to measure the radiocarbon content of CO2 produced from the oxidation of DOC in canals overlying peatland soils that have undergone widespread disturbance in Indonesia. This work shows for the first time that aged DOC mobilized from drained and burned peatland soils is susceptible to oxidation by both microbial respiration and photomineralization over aquatic travel times for DOC. The bulk radiocarbon age of CO2 produced during canal oxidation ranged from modern to ~1300 years before present. These ages for CO2 were most strongly influenced by canal water depth, which was proportional to the water table level where DOC is mobilized from disturbed soils to canals. Canal microbes preferentially respired older or younger organic C pools to CO2, and this may have been facilitated by the use of a small particulate organic C pool over the dissolved pool. Given that high densities of canals are generally associated with lower water tables and higher fire risk, our findings suggest that peatland areas with high canal density may be a hotspot for the loss of aged C on the landscape. Taken together, the results of this study show how and why aquatic processing of organic C on the landscape can enhance the transfer of long-term peat C stores to the atmosphere following disturbance.


Subject(s)
Carbon Dioxide , Carbon , Soil , Soil/chemistry , Carbon Dioxide/analysis , Carbon/analysis , Indonesia , Oxidation-Reduction
2.
Sci Rep ; 14(1): 11459, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38769331

ABSTRACT

Conservation of undrained tropical peatland ecosystems is critical for climate change mitigation as they store a tremendous amount of soil carbon that is preserved under anoxic water-logged conditions. Unfortunately, there are too few measurements of carbon fluxes from these ecosystems to estimate the climate change mitigation potential from such conservation efforts. Here, we measured carbon dioxide (CO2) and methane (CH4) fluxes as well as fluvial organic carbon export over the peat swamp forest within an undrained tropical peatland landscape in East Kalimantan, Indonesia. Our measurements throughout one year (Oct 2022-Sep 2023) showed that despite its water-logged condition, peat and water overlying the swamp forest on average emits 11.02 ± 0.49 MgCO2 ha-1 yr-1 of CO2 and 0.58 ± 0.04 MgCO2e ha-1 yr-1 of CH4. Further, the fluvial organic carbon export contributes to additional carbon loss of 1.68 ± 0.06 MgCO2e ha-1 yr-1. Our results help improve the accuracy of carbon accounting from undrained tropical peatlands, where we estimated a total carbon loss of 13.28 ± 0.50 MgCO2e ha-1 yr-1. Nevertheless, the total carbon loss reported from our sites is about half than what is reported from the drained peatland landscapes in the region and resulted in a larger onsite carbon sink potential estimate compared to other undrained peat swamp forests. Together, these findings indicate that conserving the remaining undrained peatland ecosystems in Indonesia from drainage and degradation is a promising natural climate solution strategy that avoids significant carbon emissions.

3.
Mar Pollut Bull ; 200: 116064, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38290368

ABSTRACT

Mangrove forests can help to mitigate climate change by storing a significant amount of carbon (C) in soils. Planted mangrove forests have been established to combat anthropogenic threats posed by climate change. However, the efficiency of planted forests in terms of soil organic carbon (SOC) storage and dynamics relative to that of natural forests is unclear. We assessed SOC and nutrient storage, SOC sources and drivers in a natural and a planted forest in southern Thailand. Although the planted forest stored more C and nutrients than the natural forest, the early-stage planted forest was not a strong sink relative to mudflat. Both forests were predominated by allochthonous organic C and nitrogen limited, with total nitrogen being a major driver of SOC in both cases. SOC showed a significant decline along land-to-sea and depth gradients as a result of soil texture, nutrient availability, and pH in the natural forest.


Subject(s)
Carbon , Soil , Carbon/analysis , Wetlands , Nitrogen/analysis , Thailand , Forests , Ecosystem
4.
Glob Chang Biol ; 29(15): 4279-4297, 2023 08.
Article in English | MEDLINE | ID: mdl-37100767

ABSTRACT

There are limited data for greenhouse gas (GHG) emissions from smallholder agricultural systems in tropical peatlands, with data for non-CO2 emissions from human-influenced tropical peatlands particularly scarce. The aim of this study was to quantify soil CH4 and N2 O fluxes from smallholder agricultural systems on tropical peatlands in Southeast Asia and assess their environmental controls. The study was carried out in four regions in Malaysia and Indonesia. CH4 and N2 O fluxes and environmental parameters were measured in cropland, oil palm plantation, tree plantation and forest. Annual CH4 emissions (in kg CH4 ha-1 year-1 ) were: 70.7 ± 29.5, 2.1 ± 1.2, 2.1 ± 0.6 and 6.2 ± 1.9 at the forest, tree plantation, oil palm and cropland land-use classes, respectively. Annual N2 O emissions (in kg N2 O ha-1 year-1 ) were: 6.5 ± 2.8, 3.2 ± 1.2, 21.9 ± 11.4 and 33.6 ± 7.3 in the same order as above, respectively. Annual CH4 emissions were strongly determined by water table depth (WTD) and increased exponentially when annual WTD was above -25 cm. In contrast, annual N2 O emissions were strongly correlated with mean total dissolved nitrogen (TDN) in soil water, following a sigmoidal relationship, up to an apparent threshold of 10 mg N L-1 beyond which TDN seemingly ceased to be limiting for N2 O production. The new emissions data for CH4 and N2 O presented here should help to develop more robust country level 'emission factors' for the quantification of national GHG inventory reporting. The impact of TDN on N2 O emissions suggests that soil nutrient status strongly impacts emissions, and therefore, policies which reduce N-fertilisation inputs might contribute to emissions mitigation from agricultural peat landscapes. However, the most important policy intervention for reducing emissions is one that reduces the conversion of peat swamp forest to agriculture on peatlands in the first place.


Subject(s)
Carbon Dioxide , Greenhouse Gases , Humans , Carbon Dioxide/analysis , Methane/analysis , Agriculture , Soil , Greenhouse Gases/analysis , Trees , Indonesia , Nitrogen , Nitrous Oxide/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...