Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Language
Publication year range
1.
Preprint in English | medRxiv | ID: ppmedrxiv-22274084

ABSTRACT

After the spill to humans, in the timeline of SARS-CoV-2, several positively selected variants have emerged. A phylogeographic study on these variants can reveal their spatial and temporal distribution. In December 2020, the alpha variant of the severe acute respiratory syndrome coronavirus (SARS-CoV-2), which has been designated as a variant of concern (VOC) by WHO, was discovered in the southeastern United Kingdom (UK). Slowly, it expanded across India, with a considerable number of cases, particularly in North India. The study focuses on determining the prevalence and expansion of the alpha variants in various parts of India. The genetic diversity estimation helped us understand various evolutionary forces that have shaped the spatial distribution of this variant during the peak. Overall, our study paves the way to understand the evolution and expansion of a virus variant.

2.
Preprint in English | bioRxiv | ID: ppbiorxiv-463014

ABSTRACT

SARS-CoV2, the causative agent for COVID-19, an ongoing pandemic, engages the ACE2 receptor to enter the host cell through S protein priming by a serine protease, TMPRSS2. Variation in the TMPRSS2 gene may account for the difference in population disease susceptibility. The haplotype-based genetic sharing and structure of TMPRSS2 among global populations have not been studied so far. Therefore, in the present work, we used this approach with a focus on South Asia to study the haplotypes and their sharing among various populations worldwide. We have used next-generation sequencing data of 393 individuals and analysed the TMPRSS2 gene. Our analysis of genetic relatedness for this gene showed a closer affinity of South Asians with the West Eurasian populations therefore, host disease susceptibility and severity particularly in the context of TMPRSS2 will be more akin to West Eurasian instead of East Eurasian. This is in contrast to our prior study on ACE2 gene which shows South Asian haplotypes have a strong affinity towards West Eurasians. Thus ACE2 and TMPRSS2 have an antagonistic genetic relatedness among South Asians. We have also tested the SNPs frequencies of this gene among various Indian state populations with respect to the case fatality rate. Interestingly, we found a significant positive association between the rs2070788 SNP (G Allele) and the case fatality rate in India. It has been shown that the GG genotype of rs2070788 allele tends to have a higher expression of TMPRSS2 in the lung compared to the AG and AA genotypes, thus it might play a vital part in determining differential disease vulnerability. We trust that this information will be useful in underscoring the role of the TMPRSS2 variant in COVID-19 susceptibility and using it as a biomarker may help to predict populations at risk.

3.
Preprint in English | medRxiv | ID: ppmedrxiv-21251118

ABSTRACT

Infection born by Coronavirus SARS-CoV-2 has swept the world within a time of a few months. It has created a devastating effect on humanity with social and economic depression. Europe and America were the hardest hit continents. India has also lost lives, making the country fourth most deadly worldwide. However, the infection and death rate per million and the case fatality ratio in India were substantially lower than in many developed nations. Several factors have been proposed including genetics. One of the important facts is that a large chunk of Indian population is asymptomatic to the SARS-CoV-2 infection. Thus, the real infection in India is much higher than the reported number of cases. Therefore, the majority of people are already immune in the country. To understand the dynamics of real infection as well as the level of immunity against SARS-CoV-2, we have performed antibody testing (serosurveillance) in the urban region of fourteen Indian districts encompassing six states. In our survey, the seroprevalence frequency varied between 0.01-0.48, suggesting high variability of viral transmission between states. We also found out that the cases reported by the government were several fold lower than the real incidence of infection. This discrepancy is mainly driven by the higher number of asymptomatic cases. Overall, we suggest that with the high level of immunity developed against SARS-CoV-2 in the majority of the districts, the case fatality rate of second wave in India will be minor than first wave.

SELECTION OF CITATIONS
SEARCH DETAIL
...