Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Language
Publication year range
1.
Funct Integr Genomics ; 23(3): 213, 2023 Jun 28.
Article in English | MEDLINE | ID: mdl-37378707

ABSTRACT

Plant diseases threaten global food security by reducing the production and quality of produce. Identification of disease resistance sources and their utilization in crop improvement is of paramount significance. However, constant evolution and occurrence of new, more aggressive and highly virulent pathotypes disintegrates the resistance of cultivars and hence demanding the steady stream of disease resistance cultivars as the most sustainable way of disease management. In this context, molecular tools and technologies facilitate an efficient and rational engineering of crops to develop cultivars having resistance to multiple pathogens and pathotypes. Puccinia spp. is biotrophic fungi that interrupt crucial junctions for causing infection, thus risking nutrient access of wheat plants and their subsequent growth. Sugar is a major carbon source taken from host cells by pathogens. Sugar transporters (STPs) are key players during wheat-rust interactions that regulate the transport, exchange, and allocation of sugar at plant-pathogen interfaces. Intense competition for accessing sugars decides fate of incompatibility or compatibility between host and the pathogen. The mechanism of transport, allocation, and signaling of sugar molecules and role of STPs and their regulatory switches in determining resistance/susceptibility to rusts in wheat is poorly understood. This review discusses the molecular mechanisms involving STPs in distribution of sugar molecules for determination of rust resistance/susceptibility in wheat. We also present perspective on how detailed insights on the STP's role in wheat-rust interaction will be helpful in devising efficient strategies for wheat rust management.


Subject(s)
Basidiomycota , Triticum , Triticum/genetics , Triticum/microbiology , Disease Resistance/genetics , Sugars , Puccinia , Plant Diseases/genetics , Plant Diseases/microbiology
2.
Chemosphere ; 299: 134429, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35346739

ABSTRACT

Potato peel waste is one of the zero-value wastes with the potential of bioethanol production through the Waste to Energy (WtE) approach. The newly isolated, phenotypically characterized, and molecular identified high-altitude strain, B. amyloliquefaciens, shown promising starch hydrolysis (12.06 g/L reducing sugars) over acid hydrolysis and is capable of working at 30-50 °C and pH 6.0-8.0. The ethanol production by Acinetobacter sp. (a newly isolated, phenotypically characterized, molecular identified) has been modelled and optimized through the central composite design of response surface methodology by taking the fermentation variables as input variables and ethanol yield as the output variable. The ethanol production by Acinetobacter sp. showcased a non-linear relationship of fermentation variables with the ethanol yield (5.83 g/L) with a 99.11% desirability function (R2) and 97.50 adj. R2 values. Optimal fermentation variables of 38.8% substrate concentration, 7% inoculum, pH 5.45 have been utilized for bioethanol production in 55.27 h at 27 °C. Overall, the present study evaluated the efficiency of newly isolated, indigenous extremophilic microbes of The Himalayan region in sustainable bioethanol production from zero-value waste "Potato peel waste" through the WtE approach. Moreover, the present study introduces the promising, unexplored extremophilic microbial strains with the starch-hydrolyzing and fermentation capabilities to bioethanol biorefinery.


Subject(s)
Acinetobacter , Biofuels , Fermentation , Solanum tuberosum , Acinetobacter/metabolism , Ethanol , Hydrolysis , Solanum tuberosum/chemistry , Starch/metabolism
3.
Article in English | WPRIM (Western Pacific) | ID: wpr-760631

ABSTRACT

BACKGROUND/OBJECTIVE: The blue honeysuckle berry (Lonicera caerulea var. edulis L.) is a small deciduous shrub belonging to the Caprifoliaceae family that is native to Russia, China, Japan, and Korea. The berry of this shrub is edible, sweet and juicy and is commonly known as the blue honeyberry (BHB). This study examined the anti-diabetic potential of BHB on high-fat-diet-induced mild diabetic mice. The hypoglycemic, and nephroprotective effects of the 12-week oral administration of blue honeyberry extract were analyzed. MATERIALS/METHODS: The hypoglycemic effects were based on the observed changes in insulin, blood glucose, and glycated hemoglobin (HbA1c). Furthermore, the changes in the weight of the pancreas, including its histopathology and immunohistochemical investigation were also performed. Moreover, the nephroprotective effects were analyzed by observing the changes in kidney weight, its histopathology, blood urea nitrogen (BUN), and serum creatinine levels. RESULTS: The results showed that the high-fat diet (HFD)-induced control mice showed a noticeable increase in blood glucose, insulin, HbA1c, BUN, and creatinine levels. Furthermore, growth was observed in lipid droplet deposition related to the degenerative lesions in the vacuolated renal tubules with the evident enlargement and hyperplasia of the pancreatic islets. In addition, in the endocrine pancreas, there was an increase in the insulin-and glucagon-producing cells, as well as in the insulin/glucagon cell ratios. On the other hand, compared to the HFD-treated mice group, all these diabetic and related complications were ameliorated significantly in a dose-dependent manner after 84 days of the continuous oral administration of BHBe at 400, 200 and 100 mg/kg, and a dramatic resettlement in the hepatic glucose-regulating enzyme activities was observed. CONCLUSIONS: By assessing the key parameters for T2DM, the present study showed that the BHBe could act as a potential herbal agent to cure diabetes (type II) and associated ailments in HFD-induced mice.

4.
Crit Rev Biotechnol ; 37(7): 942-957, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28095718

ABSTRACT

Tuberization in potato (Solanum tuberosum L.) is a complex biological phenomenon which is affected by several environmental cues, genetic factors and plant nutrition. Understanding the regulation of tuber induction is essential to devise strategies to improve tuber yield and quality. It is well established that short-day photoperiods promote tuberization, whereas long days and high-temperatures inhibit or delay tuberization. Worldwide research on this complex biological process has yielded information on the important bio-molecules (proteins, RNAs, plant growth regulators) associated with the tuberization process in potato. Key proteins involved in the regulation of tuberization include StSP6A, POTH1, StBEL5, StPHYB, StCONSTANS, Sucrose transporter StSUT4, StSP5G, etc. Biomolecules that become transported from "source to sink" have also been suggested to be important signaling candidates regulating the tuberization process in potatos. Four molecules, namely StSP6A protein, StBEL5 RNA, miR172 and GAs, have been found to be the main candidates acting as mobile signals for tuberization. These biomolecules can be manipulated (overexpressed/inhibited) for improving the tuberization in commercial varieties/cultivars of potato. In this review, information about the genes/proteins and their mechanism of action associated with the tuberization process is discussed.


Subject(s)
Genetic Engineering , Solanum tuberosum , Gene Expression Regulation, Plant , Plant Proteins , Plant Tubers
SELECTION OF CITATIONS
SEARCH DETAIL
...