Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
1.
J Vestib Res ; 34(2-3): 83-92, 2024.
Article in English | MEDLINE | ID: mdl-38640182

ABSTRACT

BACKGROUND: Inertial self-motion perception is thought to depend primarily on otolith cues. Recent evidence demonstrated that vestibular perceptual thresholds (including inertial heading) are adaptable, suggesting novel clinical approaches for treating perceptual impairments resulting from vestibular disease. OBJECTIVE: Little is known about the psychometric properties of perceptual estimates of inertial heading like test-retest reliability. Here we investigate the psychometric properties of a passive inertial heading perceptual test. METHODS: Forty-seven healthy subjects participated across two visits, performing in an inertial heading discrimination task. The point of subjective equality (PSE) and thresholds for heading discrimination were identified for the same day and across day tests. Paired t-tests determined if the PSE or thresholds significantly changed and a mixed interclass correlation coefficient (ICC) model examined test-retest reliability. Minimum detectable change (MDC) was calculated for PSE and threshold for heading discrimination. RESULTS: Within a testing session, the heading discrimination PSE score test-retest reliability was good (ICC = 0. 80) and did not change (t(1,36) = -1.23, p = 0.23). Heading discrimination thresholds were moderately reliable (ICC = 0.67) and also stable (t(1,36) = 0.10, p = 0.92). Across testing sessions, heading direction PSE scores were moderately correlated (ICC = 0.59) and stable (t(1,46) = -0.44, p = 0.66). Heading direction thresholds had poor reliability (ICC = 0.03) and were significantly smaller at the second visit (t(1,46) = 2.8, p = 0.008). MDC for heading direction PSE ranged from 6-9 degrees across tests. CONCLUSION: The current results indicate moderate reliability for heading perception PSE and provide clinical context for interpreting change in inertial vestibular self-motion perception over time or after an intervention.


Subject(s)
Motion Perception , Psychometrics , Humans , Male , Female , Adult , Psychometrics/methods , Psychometrics/standards , Psychometrics/instrumentation , Motion Perception/physiology , Reproducibility of Results , Young Adult , Middle Aged , Head Movements/physiology , Vestibule, Labyrinth/physiology
2.
Front Neurol ; 14: 1265889, 2023.
Article in English | MEDLINE | ID: mdl-37859653

ABSTRACT

Not all dizziness presents as vertigo, suggesting other perceptual symptoms for individuals with vestibular disease. These non-specific perceptual complaints of dizziness have led to a recent resurgence in literature examining vestibular perceptual testing with the aim to enhance clinical diagnostics and therapeutics. Recent evidence supports incorporating rehabilitation methods to retrain vestibular perception. This review describes the current field of vestibular perceptual testing from scientific laboratory techniques that may not be clinic friendly to some low-tech options that may be more clinic friendly. Limitations are highlighted suggesting directions for additional research.

3.
Syst Rev ; 12(1): 164, 2023 09 14.
Article in English | MEDLINE | ID: mdl-37710291

ABSTRACT

BACKGROUND: Unilateral peripheral vestibular hypofunction can result in symptoms of dizziness, gaze and gait instability, and impaired navigation and spatial orientation. These impairments and activity limitations may negatively impact an individual's quality of life, ability to perform activities of daily living, drive, and work. There is strong evidence supporting vestibular physical therapy for reducing symptoms, improving gaze and postural stability, and improving function in individuals with vestibular hypofunction. However, there is great variability in clinical practice with regard to the type of interventions and only weak evidence to guide optimal exercise dosage. It is important to identify the most appropriate interventions and exercise dosage to optimize and accelerate recovery of function and to decrease distress. The objective of this systematic review is to determine which interventions and which doses are most effective in decreasing dizziness or vertigo, improving postural control, and improving quality of life in adults with unilateral peripheral vestibular hypofunction. METHODS: The literature will be systematically searched using the following online databases: PubMed/MEDLINE, EMBASE, Web of Science (Science and Social Science Citation Index), Cumulative Index for Nursing and Allied Health Literature (CINAHL), and The Cochrane Library (Cochrane Database of Systematic Reviews, Cochrane Central Register of Controlled Trials [CENTRAL], Cochrane Methodology Register). The review will include randomized controlled trials (RCTs), including cluster RCTs, to assess the beneficial effects of the interventions. Assessment of methodological quality and risk of bias will be performed by two independent, blinded reviewers using the PEDro scale and Cochrane Risk of Bias version 2, respectively. The primary outcome measure will be change in self-perceived handicap related to dizziness from baseline to the end of the study, measured using the Dizziness Handicap Inventory. Other relevant outcome measures will include self-reported change in symptoms (to include severity, frequency, and duration) such as verbal or visual analog scales for dizziness. Tertiary outcome measures will include questionnaires related to disability and/or quality of life. DISCUSSION: This systematic review will identify, evaluate, and integrate the evidence on the effectiveness of physical therapy interventions for unilateral peripheral vestibular hypofunction in an adult population. We anticipate our findings may inform individualized treatment and future research. Clinical recommendations generated from this systematic review may inform vestibular physical therapy treatment of individuals with unilateral peripheral vestibular hypofunction. TRIAL REGISTRATION: In accordance with the guidelines, our systematic review protocol was registered with the International Prospective Register of Systematic Reviews (PROSPERO) on 06 August 2021 (registration number CRD42021266163 ). In the event of protocol amendments, the date of each amendment will be accompanied by a description of the change and the rationale.


Subject(s)
Dizziness , Physical Therapy Modalities , Adult , Humans , Dizziness/therapy , Systematic Reviews as Topic , Vertigo , Databases, Factual
4.
J Neurol Phys Ther ; 46(2): 178-179, 2022 Apr 01.
Article in English | MEDLINE | ID: mdl-34775435

ABSTRACT

Dizziness is very common, but it is never normal. Dizziness can make performing daily activities, work, and walking difficult. Inner ear balance problems can make people dizzy when they turn their head, which can cause problems during walking and make people more likely to fall. Most of the time dizziness is not from a life-threatening disease. Often, dizziness is related to a problem of the vestibular (or inner ear balance) system. Vestibular disorders can be caused by infections in the ear, problems with the immune system, medications that harm the inner ear, and rarely from diabetes or stroke because of a lack of blood flow to the inner ear. Stress, poor sleep, migraine headaches, overdoing some activities, and feeling anxious or sad can increase symptoms of dizziness. Updated guidelines for the treatment of inner ear disorders are published in this issue of the Journal of Neurologic Physical Therapy. The guideline recommends which exercises are best to treat the dizziness and balance problems commonly seen with an inner ear problem.


Subject(s)
Physical Therapists , Vestibular Diseases , Vestibule, Labyrinth , Dizziness/diagnosis , Dizziness/etiology , Dizziness/therapy , Humans , Postural Balance/physiology , Vertigo/therapy
5.
J Neurol Phys Ther ; 46(2): 118-177, 2022 Apr 01.
Article in English | MEDLINE | ID: mdl-34864777

ABSTRACT

BACKGROUND: Uncompensated vestibular hypofunction can result in symptoms of dizziness, imbalance, and/or oscillopsia, gaze and gait instability, and impaired navigation and spatial orientation; thus, may negatively impact an individual's quality of life, ability to perform activities of daily living, drive, and work. It is estimated that one-third of adults in the United States have vestibular dysfunction and the incidence increases with age. There is strong evidence supporting vestibular physical therapy for reducing symptoms, improving gaze and postural stability, and improving function in individuals with vestibular hypofunction. The purpose of this revised clinical practice guideline is to improve quality of care and outcomes for individuals with acute, subacute, and chronic unilateral and bilateral vestibular hypofunction by providing evidence-based recommendations regarding appropriate exercises. METHODS: These guidelines are a revision of the 2016 guidelines and involved a systematic review of the literature published since 2015 through June 2020 across 6 databases. Article types included meta-analyses, systematic reviews, randomized controlled trials, cohort studies, case-control series, and case series for human subjects, published in English. Sixty-seven articles were identified as relevant to this clinical practice guideline and critically appraised for level of evidence. RESULTS: Based on strong evidence, clinicians should offer vestibular rehabilitation to adults with unilateral and bilateral vestibular hypofunction who present with impairments, activity limitations, and participation restrictions related to the vestibular deficit. Based on strong evidence and a preponderance of harm over benefit, clinicians should not include voluntary saccadic or smooth-pursuit eye movements in isolation (ie, without head movement) to promote gaze stability. Based on moderate to strong evidence, clinicians may offer specific exercise techniques to target identified activity limitations and participation restrictions, including virtual reality or augmented sensory feedback. Based on strong evidence and in consideration of patient preference, clinicians should offer supervised vestibular rehabilitation. Based on moderate to weak evidence, clinicians may prescribe weekly clinic visits plus a home exercise program of gaze stabilization exercises consisting of a minimum of: (1) 3 times per day for a total of at least 12 minutes daily for individuals with acute/subacute unilateral vestibular hypofunction; (2) 3 to 5 times per day for a total of at least 20 minutes daily for 4 to 6 weeks for individuals with chronic unilateral vestibular hypofunction; (3) 3 to 5 times per day for a total of 20 to 40 minutes daily for approximately 5 to 7 weeks for individuals with bilateral vestibular hypofunction. Based on moderate evidence, clinicians may prescribe static and dynamic balance exercises for a minimum of 20 minutes daily for at least 4 to 6 weeks for individuals with chronic unilateral vestibular hypofunction and, based on expert opinion, for a minimum of 6 to 9 weeks for individuals with bilateral vestibular hypofunction. Based on moderate evidence, clinicians may use achievement of primary goals, resolution of symptoms, normalized balance and vestibular function, or plateau in progress as reasons for stopping therapy. Based on moderate to strong evidence, clinicians may evaluate factors, including time from onset of symptoms, comorbidities, cognitive function, and use of medication that could modify rehabilitation outcomes. DISCUSSION: Recent evidence supports the original recommendations from the 2016 guidelines. There is strong evidence that vestibular physical therapy provides a clear and substantial benefit to individuals with unilateral and bilateral vestibular hypofunction. LIMITATIONS: The focus of the guideline was on peripheral vestibular hypofunction; thus, the recommendations of the guideline may not apply to individuals with central vestibular disorders. One criterion for study inclusion was that vestibular hypofunction was determined based on objective vestibular function tests. This guideline may not apply to individuals who report symptoms of dizziness, imbalance, and/or oscillopsia without a diagnosis of vestibular hypofunction. DISCLAIMER: These recommendations are intended as a guide to optimize rehabilitation outcomes for individuals undergoing vestibular physical therapy. The contents of this guideline were developed with support from the American Physical Therapy Association and the Academy of Neurologic Physical Therapy using a rigorous review process. The authors declared no conflict of interest and maintained editorial independence.Video Abstract available for more insights from the authors (see the Video, Supplemental Digital Content 1, available at: http://links.lww.com/JNPT/A369).


Subject(s)
Vestibular Diseases , Activities of Daily Living , Adult , Dizziness , Humans , Physical Therapy Modalities , Quality of Life , Vertigo , Vestibular Diseases/rehabilitation
6.
Front Sports Act Living ; 3: 787182, 2021.
Article in English | MEDLINE | ID: mdl-34939030

ABSTRACT

Wearing a facemask (FM) reduces the spread of COVID-19, but it also blocks a person's lower visual field. Many new public safety rules were created in response to COVID-19, including mandated FM wearing in some youth sports like youth ice hockey. We hypothesized that FM wearing in youth hockey players obstructs the lower field of view and may impact safety. Youth hockey players (n = 33) aged 12.03 (1.6) years button press when they saw an LED on the floor turn on in two conditions (wearing FM or no FM) in random order. An interleaved one-up/one-down two-alternative-forced-choice adaptive staircase design was used. Visual thresholds were calculated for each condition and participant. The visual angle threshold (VAT) was determined using standing eye height and the linear distance from the tip of the skates to the visual threshold. Paired t-tests determined whether mask wearing changed the VAT. We modeled the probability a player could see the puck on their stick in four distinct scenarios to estimate the potential impact of FM wearing during hockey play. The average unmasked VAT (11.4 degrees) was significantly closer to the skates than the masked VAT (20.3 degrees) (p < 0.001). Our model indicated a significant reduction in ability to visualize the puck using peripheral vision when more upright while wearing a FM. FM wearing compromised their lower visual field, suggesting a downward head tilt may be necessary to see the puck. Playing ice hockey while wearing a FM may lead to unsafe on-ice playing conditions due to downward head tilt to see the puck.

7.
J Neurol Phys Ther ; 45(1): 36-40, 2021 01.
Article in English | MEDLINE | ID: mdl-33201008

ABSTRACT

Individuals with balance and gait problems encounter additional challenges navigating this post-coronavirus disease-2019 (COVID-19) world. All but the best fitting facemasks partially obscure the lower visual field. Facemask use by individuals with balance and gait problems has the potential to further compromise walking safety. More broadly, as the world reopens for business, balance and gait testing in clinics and research laboratories will also be impacted by facemask use. Here, we highlight some of the challenges faced by patients, clinicians, and researchers as they return to "normal" after COVID-19.Video Abstract is available for insights from the authors (see the Video, Supplemental Digital Content 1, available at: http://links.lww.com/JNPT/A328).


Subject(s)
COVID-19/prevention & control , Gait Disorders, Neurologic , Masks/adverse effects , N95 Respirators/adverse effects , Postural Balance , Spatial Navigation , Visual Fields , Aged , Female , Gait Disorders, Neurologic/physiopathology , Humans , Male , Middle Aged , Postural Balance/physiology , Spatial Navigation/physiology , Visual Fields/physiology
8.
Front Neurol ; 11: 484, 2020.
Article in English | MEDLINE | ID: mdl-32595588

ABSTRACT

Spatial cognition is the process by which individuals interact with their spatial environment. Spatial cognition encompasses the specific skills of spatial memory, spatial orientation, and spatial navigation. Prior studies have shown an association between psychometric tests of spatial ability and self-reported or virtual measures of spatial navigation. In this study, we examined whether psychometric spatial cognitive tests predict performance on a dynamic spatial navigation task that involves movement through an environment. We recruited 151 community-dwelling adult participants [mean (SD) age 69.7 (13.6), range 24.6-93.2] from the Baltimore Longitudinal Study of Aging (BLSA). Spatial navigation ability was assessed using the triangle completion task (TCT), and two quantities, the angle and distance of deviation, were computed. Visuospatial cognitive ability was assessed primarily using the Card Rotations Test. Additional tests of executive function, memory, and attention were also administered. In multiple linear regression analyses adjusting for age, sex, race, and education, cognitive tests of visuospatial ability, executive function, and perceptual motor speed and integration were significantly associated with spatial navigation, as determined by performance on the TCT. These findings suggest that dynamic spatial navigation ability is related to spatial memory, executive function, and motor processing speed.

9.
Sports Health ; 11(6): 479-485, 2019.
Article in English | MEDLINE | ID: mdl-31411942

ABSTRACT

BACKGROUND: Oculomotor impairments, dizziness, and imbalance are common after sports-related concussion (SRC) in adolescents and suggest a relationship between SRC and vestibular system dysfunction. However, it is not clear whether the source of these problems is attributable to the peripheral or central vestibular system. HYPOTHESIS: The video Head Impulse Test (vHIT), which assesses peripheral vestibular function, will show differences in gain between adolescents with and without SRC. Furthermore, there will be an association between vHIT and clinical balance and vestibular/oculomotor testing. STUDY DESIGN: Cross-sectional study. LEVEL OF EVIDENCE: Level 2. METHODS: Twenty-five symptomatic adolescents aged between 12 and 19 years with a recent (within 10 days) SRC and 22 healthy controls aged 13 to 20 years were assessed using the vHIT, Balance Error Scoring System (BESS), and Vestibular Ocular Motor Screening (VOMS) tools. The vestibulo-ocular reflex (VOR) gain was calculated independently for right and left head impulses. Independent-samples t tests or Mann-Whitney U tests for nonnormal distributions were used to compare concussed patients and controls on the measures. Spearman rank-order correlations were used to assess the association of vHIT with BESS and VOMS. RESULTS: VOR gain in all adolescents with SRC was greater than 0.8, which is considered within normal limits. VOR gain and BESS scores were not significantly different between groups. Adolescents with SRC had significantly worse VOMS item scores than adolescents without SRC (P < 0.001). There were no significant correlations among vHIT gain and VOMS or BESS. CONCLUSION: There was no evidence for dysfunction in the peripheral horizontal semicircular canal function at high rotation speeds (ie, vHIT) after SRC, and vHIT was unrelated to balance and vestibular/oculomotor symptoms and dysfunction. However, adolescents with SRC scored worse on vestibular and oculomotor testing than those without SRC. Vestibular dysfunction and symptoms after SRC may be centrally derived. CLINICAL RELEVANCE: We do not recommend the assessment of head impulse function in adolescents with SRC unless more definitive signs of peripheral vestibular injury are present. We recommend using the VOMS to assess symptoms of suspected SRC injury in adolescents.


Subject(s)
Athletic Injuries/physiopathology , Brain Concussion/physiopathology , Reflex, Vestibulo-Ocular/physiology , Adolescent , Athletic Injuries/diagnosis , Brain Concussion/diagnosis , Child , Cross-Sectional Studies , Female , Head Impulse Test , Humans , Male , Postural Balance/physiology , Semicircular Canals/physiopathology , Young Adult
10.
Front Neurol ; 9: 142, 2018.
Article in English | MEDLINE | ID: mdl-29599743

ABSTRACT

BACKGROUND: Individuals with bilateral vestibular hypofunction (BVH) often report symptoms of oscillopsia during walking. Existing assessments of oscillopsia are limited to descriptions of severity and symptom frequency, neither of which provides a description of functional limitations attributed to oscillopsia. A novel questionnaire, the Oscillopsia Functional Impact scale (OFI) was developed to describe the impact of oscillopsia on daily life activities. Questions on the OFI ask how often individuals are able to execute specific activities considered to depend on gaze stability in an effort to link functional mobility impairments to oscillopsia for individuals with vestibular loss. METHODS: Subjective reports of oscillopsia and balance confidence were recorded for 21 individuals with BVH and 48 healthy controls. Spearman correlation coefficients were calculated to determine the relationship between the OFI and oscillopsia visual analog scale (OS VAS), oscillopsia severity questionnaire (OSQ), and Activities-Specific Balance Confidence scale to demonstrate face validity. Chronbach's α was calculated to determine internal validity for the items of the OFI. A one-way MANOVA was conducted with planned post hoc paired t-tests for group differences on all oscillopsia questionnaires using a corrected α = 0.0125. RESULTS: The OFI was highly correlated with measures of oscillopsia severity (OS VAS; r = 0.69, p < 0.001) and frequency (OSQ; r = 0.84, p < 0.001) and also with the Activities-Specific Balance Confidence scale (r = -0.84, p < 0.001). Cronbach's α for the OFI was 0.97. Individuals with BVH scored worse on all measures of oscillopsia and balance confidence compared to healthy individuals (p's < 0.001). CONCLUSION: The OFI appears to capture the construct of oscillopsia in the context of functional mobility. Combining with oscillopsia metrics that quantify severity and frequency allows for a more complete characterization of the impact of oscillopsia on an individual's daily behavior. The OFI discriminated individuals with BVH from healthy individuals.

11.
J Assoc Res Otolaryngol ; 18(4): 591-600, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28593438

ABSTRACT

Individuals with bilateral vestibular hypofunction (BVH) often report symptoms of oscillopsia (the perception that the world is bouncing or unstable) during walking. Efference copy/proprioception contributes to locomotion gaze stability in animals, sometimes inhibiting the vestibulo-ocular reflex (VOR). Gaze stability requires both adequate eye velocity and appropriate timing of eye movements. It is unknown whether eye velocity (VOR gain), timing (phase), or both are impaired for individuals with BVH during walking. Identifying the specific mechanism of impaired gaze stability can better inform rehabilitation options. Gaze stability was measured for eight individuals with severe BVH and eight healthy age- and gender-matched controls while performing a gaze fixation task during treadmill walking. Frequency response functions (FRF) were calculated from pitch eye and head velocity. A one-way ANOVA was conducted to determine group differences for each frequency bin of the FRF. Pearson correlation coefficients were calculated to determine the relationship between the real and imaginary parts of the FRF and the Oscillopsia Visual Analog Scale (oVAS) scores. Individuals with BVH demonstrated significantly lower gains than healthy controls above 0.5 Hz, but their phase was ideally compensatory for frequencies below 3 Hz. Higher oVAS scores were correlated with lower gain. Individuals with BVH demonstrated ideal timing for vertical eye movements while walking despite slower than ideal eye velocity when compared to healthy controls. Rehabilitation interventions focusing on enhancing VOR gain during walking should be developed to take advantage of the intact timing reported here. Specifically, training VOR gain while walking may reduce oscillopsia severity and improve quality of life.


Subject(s)
Bilateral Vestibulopathy/physiopathology , Reflex, Vestibulo-Ocular , Adult , Aged , Eye Movements , Female , Humans , Male , Middle Aged , Walking
12.
Otol Neurotol ; 38(3): 373-378, 2017 03.
Article in English | MEDLINE | ID: mdl-28192379

ABSTRACT

OBJECTIVE: To determine whether compensatory saccade metrics observed in the video head impulse test, specifically saccade amplitude and latency, predict physical performance. STUDY DESIGN: Cross-sectional analysis of the Baltimore Longitudinal Study of Aging, a prospective cohort study. SETTING: National Institute on Aging Intramural Research Program Clinical Research Unit in Baltimore, Maryland. PATIENTS: Community-dwelling older adults. INTERVENTION(S): Video head impulse testing was performed, and compensatory saccades and horizontal vestibulo-ocular reflex (VOR) gain were measured. Physical performance was assessed using the Short Physical Performance Battery (SPPB), which included the feet side-by-side, semitandem, tandem, and single-leg stance; repeated chair stands; and usual gait speed measurements. MAIN OUTCOME MEASURE(S): Compensatory saccade amplitude and latency, VOR gain, and SPPB performance. RESULTS: In 183 participants who underwent vestibular and SPPB testing (mean age 71.8 yr; 53% females), both higher mean saccade amplitude (odds ratio [OR] =1.62, p = 0.010) and shorter mean saccade latency (OR = 0.88, p = 0.004) were associated with a higher odds of failing the tandem stand task. In contrast, VOR gain was not associated with any physical performance measure. CONCLUSION: We observed in a cohort of healthy older adults that compensatory saccade amplitude and latency were associated with tandem stance performance. Compensatory saccade metrics may provide insights into capturing the impact of vestibular loss on physical function in older adults.


Subject(s)
Aging/physiology , Reflex, Vestibulo-Ocular/physiology , Saccades/physiology , Adult , Aged , Baltimore , Cross-Sectional Studies , Female , Head Impulse Test , Humans , Longitudinal Studies , Male , Middle Aged , Prospective Studies
13.
J Geriatr Phys Ther ; 40(4): 183-189, 2017.
Article in English | MEDLINE | ID: mdl-27341325

ABSTRACT

BACKGROUND AND PURPOSE: Walking speed is an important dimension of gait function and is known to decline with age. Gait function is a process of dynamic balance and motor control that relies on multiple sensory inputs (eg, visual, proprioceptive, and vestibular) and motor outputs. These sensory and motor physiologic systems also play a role in static postural control, which has been shown to decline with age. In this study, we evaluated whether imbalance that occurs as part of healthy aging is associated with slower walking speed in a nationally representative sample of older adults. METHODS: We performed a cross-sectional analysis of the previously collected 1999 to 2002 National Health and Nutrition Examination Survey (NHANES) data to evaluate whether age-related imbalance is associated with slower walking speed in older adults aged 50 to 85 years (n = 2116). Balance was assessed on a pass/fail basis during a challenging postural task-condition 4 of the modified Romberg Test-and walking speed was determined using a 20-ft (6.10 m) timed walk. Multivariable linear regression was used to evaluate the association between imbalance and walking speed, adjusting for demographic and health-related covariates. A structural equation model was developed to estimate the extent to which imbalance mediates the association between age and slower walking speed. RESULTS: In the unadjusted regression model, inability to perform the NHANES balance task was significantly associated with 0.10 m/s slower walking speed (95% confidence interval: -0.13 to -0.07; P < .01). In the multivariable regression analysis, inability to perform the balance task was significantly associated with 0.06 m/s slower walking speed (95% confidence interval: -0.09 to -0.03; P < .01), an effect size equivalent to 12 years of age. The structural equation model estimated that age-related imbalance mediates 12.2% of the association between age and slower walking speed in older adults. CONCLUSIONS: In a nationally representative sample, age-related balance limitation was associated with slower walking speed. Balance impairment may lead to walking speed declines. In addition, reduced static postural control and dynamic walking speed that occur with aging may share common etiologic origins, including the decline in visual, proprioceptive, and vestibular sensory and motor functions.


Subject(s)
Aging/physiology , Gait/physiology , Postural Balance/physiology , Walking Speed/physiology , Aged , Aged, 80 and over , Cross-Sectional Studies , Female , Humans , Male , Middle Aged , Nutrition Surveys , Regression Analysis , Walking/physiology
14.
Front Neurol ; 7: 113, 2016.
Article in English | MEDLINE | ID: mdl-27486430

ABSTRACT

OBJECTIVE: Rotational vestibular function declines with age resulting in saccades as a compensatory mechanism to improve impaired gaze stability. Small reductions in rotational vestibulo-ocular reflex (VOR) gain that would be considered clinically normal have been associated with compensatory saccades. We evaluated whether compensatory saccade characteristics varied as a function of age, independent of semicircular canal function as quantified by VOR gain. METHODS: Horizontal VOR gain was measured in 243 participants age 27-93 from the Baltimore Longitudinal Study of Aging using video head impulse testing. Latency and amplitude of the first saccade (either covert - occurring during head impulse, or overt - occurring following head impulse) were measured for head impulses with compensatory saccades (n = 2230 head impulses). The relationship between age and saccade latency, as well as the relationship between age and saccade amplitude, were evaluated using regression analyses adjusting for VOR gain, gender, and race. RESULTS: Older adults (mean age 75.9) made significantly larger compensatory saccades relative to younger adults (mean age 45.0). In analyses adjusted for VOR gain, there was a significant association between age and amplitude of the first compensatory covert saccade (ß = 0.015, p = 0.008). In analyses adjusted for VOR gain, there was a significant association between age and amplitude of the first compensatory overt saccade (ß = 0.02, p < 0.001). Compensatory saccade latencies did not vary significantly by age. CONCLUSION: We observed that aging increases the compensatory catch-up saccade amplitude in healthy adults after controlling for VOR gain. Size of compensatory saccades may be useful in addition to VOR gain for characterizing vestibular function in aging adults.

15.
Front Aging Neurosci ; 8: 150, 2016.
Article in English | MEDLINE | ID: mdl-27445793

ABSTRACT

OBJECTIVE: Vestibulo-ocular reflex (VOR) gain is well-suited for identifying rotational vestibular dysfunction, but may miss partial progressive decline in age-related vestibular function. Since compensatory saccades might provide an alternative method for identifying subtle vestibular decline, we describe the relationship between VOR gain and compensatory saccades in healthy older adults. METHODS: Horizontal VOR gain was measured in 243 subjects age 60 and older from the Baltimore Longitudinal Study of Aging using video head impulse testing (HIT). Saccades in each HIT were identified as either "compensatory" or "compensatory back-up," i.e., same or opposite direction as the VOR response respectively. Saccades were also classified as "covert" (occurring during head movement) and "overt" (occurring after head movement). The relationship between VOR gain and percentage of HITs with saccades, as well as the relationship between VOR gain and saccade latency and amplitude, were evaluated using regression analyses adjusting for age, gender, and race. RESULTS: In adjusted analyses, the percentage of HITs with compensatory saccades increased 4.5% for every 0.1 decrease in VOR gain (p < 0.0001). Overt compensatory saccade amplitude decreased 0.6° (p < 0.005) and latency increased 90 ms (p < 0.001) for every 0.1 increase in VOR gain. Covert back-up compensatory saccade amplitude increased 0.4° for every 0.1 increase in VOR gain. CONCLUSION: We observed significant relationships between VOR gain and compensatory saccades in healthy older adults. Lower VOR gain was associated with larger amplitude, shorter latency compensatory saccades. Compensatory saccades reflect underlying rotational vestibular hypofunction, and may be particularly useful at identifying partial vestibular deficits as occur in aging adults.

SELECTION OF CITATIONS
SEARCH DETAIL
...