Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Cancer Res ; 83(7): 997-1015, 2023 04 04.
Article in English | MEDLINE | ID: mdl-36696357

ABSTRACT

Breast cancer subtypes and their phenotypes parallel different stages of the mammary epithelial cell developmental hierarchy. Discovering mechanisms that control lineage identity could provide novel avenues for mitigating disease progression. Here we report that the transcriptional corepressor TLE3 is a guardian of luminal cell fate in breast cancer and operates independently of the estrogen receptor. In luminal breast cancer, TLE3 actively repressed the gene-expression signature associated with highly aggressive basal-like breast cancers (BLBC). Moreover, maintenance of the luminal lineage depended on the appropriate localization of TLE3 to its transcriptional targets, a process mediated by interactions with FOXA1. By repressing genes that drive BLBC phenotypes, including SOX9 and TGFß2, TLE3 prevented the acquisition of a hybrid epithelial-mesenchymal state and reduced metastatic capacity and aggressive cellular behaviors. These results establish TLE3 as an essential transcriptional repressor that sustains the more differentiated and less metastatic nature of luminal breast cancers. Approaches to induce TLE3 expression could promote the acquisition of less aggressive, more treatable disease states to extend patient survival. SIGNIFICANCE: Transcriptional corepressor TLE3 actively suppresses SOX9 and TGFß transcriptional programs to sustain the luminal lineage identity of breast cancer cells and to inhibit metastatic progression.


Subject(s)
Neoplasms , Transcription Factors , Cell Differentiation , Co-Repressor Proteins/genetics , Receptors, Estrogen/metabolism , Transforming Growth Factor beta , Breast Neoplasms/metabolism , Humans
2.
Cancers (Basel) ; 13(20)2021 Oct 17.
Article in English | MEDLINE | ID: mdl-34680352

ABSTRACT

The pioneering function of FOXA1 establishes estrogen-responsive transcriptomes in luminal breast cancer. Dysregulated FOXA1 chromatin occupancy through focal amplification, mutation, or cofactor recruitment modulates estrogen receptor (ER) transcriptional programs and drives endocrine-resistant disease. However, ER is not the sole nuclear receptor (NR) expressed in breast cancers, nor is it the only NR for which FOXA1 serves as a licensing factor. Receptors for androgens, glucocorticoids, and progesterone are also found in the majority of breast cancers, and their functions are also impacted by FOXA1. These NRs interface with ER transcriptional programs and, depending on their activation level, can reprogram FOXA1-ER cistromes. Thus, NR interplay contributes to endocrine therapy response and resistance and may provide a vulnerability for future therapeutic benefit in patients. Herein, we review what is known regarding FOXA1 regulation of NR function in breast cancer in the context of cell identity, endocrine resistance, and NR crosstalk in breast cancer progression and treatment.

3.
Endocrinology ; 162(12)2021 12 01.
Article in English | MEDLINE | ID: mdl-34606589

ABSTRACT

Chromosomal instability (CIN), or the dynamic change in chromosome number and composition, has been observed in cancer for decades. Recently, this phenomenon has been implicated as facilitating the acquisition of cancer hallmarks and enabling the formation of aggressive disease. Hence, CIN has the potential to serve as a therapeutic target for a wide range of cancers. CIN in cancer often occurs as a result of disrupting key regulators of mitotic fidelity and faithful chromosome segregation. As a consequence of their essential roles in mitosis, dysfunctional centrosomes can induce and maintain CIN. Centrosome defects are common in breast cancer, a heterogeneous disease characterized by high CIN. These defects include amplification, structural defects, and loss of primary cilium nucleation. Recent studies have begun to illuminate the ability of centrosome aberrations to instigate genomic flux in breast cancer cells and the tumor evolution associated with aggressive disease and poor patient outcomes. Here, we review the role of CIN in breast cancer, the processes by which centrosome defects contribute to CIN in this disease, and the emerging therapeutic approaches that are being developed to capitalize upon such aberrations.


Subject(s)
Breast Neoplasms/genetics , Centrosome/physiology , Chromosomal Instability , Animals , Breast Neoplasms/pathology , Centrosome/metabolism , Centrosome/pathology , Chromosomal Instability/genetics , Female , Genomic Instability/genetics , Humans
4.
J Biol Chem ; 297(4): 101162, 2021 10.
Article in English | MEDLINE | ID: mdl-34481843

ABSTRACT

Cyclin-dependent kinase 7 (CDK7) is a master regulatory kinase that drives cell cycle progression and stimulates expression of oncogenes in a myriad of cancers. Inhibitors of CDK7 (CDK7i) are currently in clinical trials; however, as with many cancer therapies, patients will most likely experience recurrent disease due to acquired resistance. Identifying targets underlying CDK7i resistance will facilitate prospective development of new therapies that can circumvent such resistance. Here we utilized triple-negative breast cancer as a model to discern mechanisms of resistance as it has been previously shown to be highly responsive to CDK7 inhibitors. After generating cell lines with acquired resistance, high-throughput RNA sequencing revealed significant upregulation of genes associated with efflux pumps and transforming growth factor-beta (TGF-ß) signaling pathways. Genetic silencing or pharmacological inhibition of ABCG2, an efflux pump associated with multidrug resistance, resensitized resistant cells to CDK7i, indicating a reliance on these transporters. Expression of activin A (INHBA), a member of the TGF-ß family of ligands, was also induced, whereas its intrinsic inhibitor, follistatin (FST), was repressed. In resistant cells, increased phosphorylation of SMAD3, a downstream mediator, confirmed an increase in activin signaling, and phosphorylated SMAD3 directly bound the ABCG2 promoter regulatory region. Finally, pharmacological inhibition of TGF-ß/activin receptors or genetic silencing of SMAD4, a transcriptional partner of SMAD3, reversed the upregulation of ABCG2 in resistant cells and phenocopied ABCG2 inhibition. This study reveals that inhibiting the TGF-ß/Activin-ABCG2 pathway is a potential avenue for preventing or overcoming resistance to CDK7 inhibitors.


Subject(s)
ATP Binding Cassette Transporter, Subfamily G, Member 2/biosynthesis , Cyclin-Dependent Kinases/antagonists & inhibitors , Drug Resistance, Neoplasm/drug effects , Gene Expression Regulation, Neoplastic/drug effects , Inhibin-beta Subunits/metabolism , Neoplasm Proteins/biosynthesis , Protein Kinase Inhibitors/pharmacology , Signal Transduction/drug effects , Transforming Growth Factor beta/metabolism , Triple Negative Breast Neoplasms/metabolism , Up-Regulation/drug effects , ATP Binding Cassette Transporter, Subfamily G, Member 2/genetics , Cell Line, Tumor , Cyclin-Dependent Kinases/genetics , Cyclin-Dependent Kinases/metabolism , Drug Resistance, Neoplasm/genetics , Female , Humans , Inhibin-beta Subunits/genetics , Neoplasm Proteins/genetics , Signal Transduction/genetics , Transforming Growth Factor beta/genetics , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/pathology , Cyclin-Dependent Kinase-Activating Kinase
5.
Oncotarget ; 12(8): 723-725, 2021 Apr 13.
Article in English | MEDLINE | ID: mdl-33889296
6.
Breast Cancer Res ; 22(1): 66, 2020 06 18.
Article in English | MEDLINE | ID: mdl-32552913

ABSTRACT

BACKGROUND: Triple-negative breast cancer (TNBC) is characterized by high rates of recurrence and poor overall survival. This is due, in part, to a deficiency of targeted therapies, making it essential to identify therapeutically targetable driver pathways of this disease. While epidermal growth factor receptor (EGFR) is expressed in 60% of TNBCs and drives disease progression, attempts to inhibit EGFR in unselected TNBC patients have had a marginal impact on outcomes. Hence, we sought to identify the mechanisms that dictate EGFR expression and inhibitor response to provide a path for improving the utility of these drugs. In this regard, the majority of TNBCs express low levels of the transcription factor, Krüppel-like factor 4 (KLF4), while a small subset is associated with high expression. KLF4 and EGFR have also been reported to have opposing actions in TNBC. Thus, we tested whether KLF4 controls the expression of EGFR and cellular response to its pharmacological inhibition. METHODS: KLF4 was transiently overexpressed in MDA-MB-231 and MDA-MB-468 cells or silenced in MCF10A cells. Migration and invasion were assessed using modified Boyden chamber assays, and proliferation was measured by EdU incorporation. Candidate downstream targets of KLF4, including EGFR, were identified using reverse phase protein arrays of MDA-MB-231 cells following enforced KLF4 expression. The ability of KLF4 to suppress EGFR gene and protein expression and downstream signaling was assessed by RT-PCR and western blot, respectively. ChIP-PCR confirmed KLF4 binding to the EGFR promoter. Response to erlotinib in the context of KLF4 overexpression or silencing was assessed using cell number and dose-response curves. RESULTS: We report that KLF4 is a major determinant of EGFR expression and activity in TNBC cells. KLF4 represses transcription of the EGFR gene, leading to reduced levels of total EGFR, its activated/phosphorylated form (pEGFR), and its downstream signaling intermediates. Moreover, KLF4 suppression of EGFR is a necessary intermediary step for KLF4 to inhibit aggressive TNBC phenotypes. Most importantly, KLF4 dictates the sensitivity of TNBC cells to erlotinib, an FDA-approved inhibitor of EGFR. CONCLUSIONS: KLF4 is a major regulator of the efficacy of EGFR inhibitors in TNBC cells that may underlie the variable effectiveness of such drugs in patients.


Subject(s)
Antineoplastic Agents/pharmacology , Erlotinib Hydrochloride/pharmacology , Kruppel-Like Transcription Factors/metabolism , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/genetics , Apoptosis/drug effects , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Cell Movement/drug effects , Cell Proliferation/drug effects , Cell Survival/drug effects , ErbB Receptors/antagonists & inhibitors , ErbB Receptors/genetics , ErbB Receptors/metabolism , Female , Humans , Kruppel-Like Factor 4 , Kruppel-Like Transcription Factors/genetics , Phosphorylation , Signal Transduction , Triple Negative Breast Neoplasms/metabolism , Triple Negative Breast Neoplasms/pathology
7.
Cancer Res ; 80(8): 1693-1706, 2020 04 15.
Article in English | MEDLINE | ID: mdl-32054769

ABSTRACT

A significant therapeutic challenge for patients with cancer is resistance to chemotherapies such as taxanes. Overexpression of LIN9, a transcriptional regulator of cell-cycle progression, occurs in 65% of patients with triple-negative breast cancer (TNBC), a disease commonly treated with these drugs. Here, we report that LIN9 is further elevated with acquisition of taxane resistance. Inhibiting LIN9 genetically or by suppressing its expression with a global BET inhibitor restored taxane sensitivity by inducing mitotic progression errors and apoptosis. While sustained LIN9 is necessary to maintain taxane resistance, there are no inhibitors that directly repress its function. Hence, we sought to discover a druggable downstream transcriptional target of LIN9. Using a computational approach, we identified NIMA-related kinase 2 (NEK2), a regulator of centrosome separation that is also elevated in taxane-resistant cells. High expression of NEK2 was predictive of low survival rates in patients who had residual disease following treatment with taxanes plus an anthracycline, suggesting a role for this kinase in modulating taxane sensitivity. Like LIN9, genetic or pharmacologic blockade of NEK2 activity in the presence of paclitaxel synergistically induced mitotic abnormalities in nearly 100% of cells and completely restored sensitivity to paclitaxel, in vitro. In addition, suppressing NEK2 activity with two distinct small molecules potentiated taxane response in multiple in vivo models of TNBC, including a patient-derived xenograft, without inducing toxicity. These data demonstrate that the LIN9/NEK2 pathway is a therapeutically targetable mediator of taxane resistance that can be leveraged to improve response to this core chemotherapy. SIGNIFICANCE: Resistance to chemotherapy is a major hurdle for treating patients with cancer. Combining NEK2 inhibitors with taxanes may be a viable approach for improving patient outcomes by enhancing mitotic defects induced by taxanes alone.


Subject(s)
Drug Resistance, Neoplasm/drug effects , Mitosis/drug effects , NIMA-Related Kinases/antagonists & inhibitors , Nuclear Proteins/antagonists & inhibitors , Paclitaxel/pharmacology , Taxoids/pharmacology , Triple Negative Breast Neoplasms/drug therapy , Tumor Suppressor Proteins/antagonists & inhibitors , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/pharmacology , Apoptosis , Cell Line, Tumor , Cellular Senescence , Centrosome/enzymology , Female , Gene Expression Regulation, Neoplastic , Gene Silencing , Heterografts , Humans , Mitosis/genetics , NIMA-Related Kinases/metabolism , Neoplasm Proteins/antagonists & inhibitors , Neoplasm Proteins/metabolism , Nuclear Proteins/metabolism , Paclitaxel/administration & dosage , Survival Rate , Taxoids/administration & dosage , Triple Negative Breast Neoplasms/metabolism , Triple Negative Breast Neoplasms/mortality , Tumor Stem Cell Assay , Tumor Suppressor Proteins/metabolism , Up-Regulation
8.
Article in English | MEDLINE | ID: mdl-32395618

ABSTRACT

The existence of mammary epithelial stem cell (MaSC) populations capable of mediating mammary gland development and homeostasis has been established for over a decade. A combination of lineage tracing and mammary gland transplantation studies has affirmed that MaSCs and their downstream progenitors are organized in a hierarchal manner; however, these techniques have failed to illuminate the complete spectrum of epithelial intermediate populations or their spatial and temporal relationships. The advent of single cell sequencing technology has allowed for characterization of highly heterogeneous tissues at high resolution. In the last two years, the remarkable advances in single cell RNA sequencing (scRNA-seq) technologies have been leveraged to address the heterogeneity of the mammary epithelium. These studies have afforded fresh insights into the transcriptional differentiation hierarchy and its chronology. Importantly, these data have led to a major conceptual shift in which the rigid boundaries separating stem, progenitor, and differentiated epithelial populations have been deconstructed, resulting in a new more fluid and flexible model of epithelial differentiation. The emerging view of the mammary epithelial hierarchy has important implications for mammary development, carcinogenesis, and metastasis, providing novel insights into the underlying cellular states that may promote malignant phenotypes.

9.
Arterioscler Thromb Vasc Biol ; 38(3): 636-644, 2018 03.
Article in English | MEDLINE | ID: mdl-29348122

ABSTRACT

OBJECTIVE: Hematopoietic-derived cells have been reported in heart valves but remain poorly characterized. Interestingly, recent studies reveal infiltration of leukocytes and increased macrophages in human myxomatous mitral valves. Nevertheless, timing and contribution of macrophages in normal valves and myxomatous valve disease are still unknown. The objective is to characterize leukocytes during postnatal heart valve maturation and identify macrophage subsets in myxomatous valve disease. APPROACH AND RESULTS: Leukocytes are detected in heart valves after birth, and their numbers increase during postnatal valve development. Flow cytometry and immunostaining analysis indicate that almost all valve leukocytes are myeloid cells, consisting of at least 2 differentially localized macrophage subsets and dendritic cells. Beginning a week after birth, increased numbers of CCR2+ (C-C chemokine receptor type 2) macrophages are present, consistent with infiltrating populations of monocytes, and macrophages are localized in regions of biomechanical stress in the valve leaflets. Valve leukocytes maintain expression of CD (cluster of differentiation) 45 and do not contribute to significant numbers of endothelial or interstitial cells. Macrophage lineages were examined in aortic and mitral valves of Axin2 KO (knockout) mice that exhibit myxomatous features. Infiltrating CCR2+ monocytes and expansion of CD206-expressing macrophages are localized in regions where modified heavy chain hyaluronan is observed in myxomatous valve leaflets. Similar colocalization of modified hyaluronan and increased numbers of macrophages were observed in human myxomatous valve disease. CONCLUSIONS: Our study demonstrates the heterogeneity of myeloid cells in heart valves and highlights an alteration of macrophage subpopulations, notably an increased presence of infiltrating CCR2+ monocytes and CD206+ macrophages, in myxomatous valve disease.


Subject(s)
Cell Lineage , Extracellular Matrix/pathology , Heart Valve Diseases/pathology , Heart Valves/pathology , Macrophages/pathology , Age Factors , Aged , Animals , Axin Protein/genetics , Axin Protein/metabolism , CX3C Chemokine Receptor 1/genetics , CX3C Chemokine Receptor 1/metabolism , Dendritic Cells/metabolism , Dendritic Cells/pathology , Disease Models, Animal , Extracellular Matrix/metabolism , Female , Gene Expression Regulation, Developmental , Genes, Reporter , Heart Valve Diseases/genetics , Heart Valve Diseases/metabolism , Heart Valves/metabolism , Humans , Hyaluronic Acid/metabolism , Lectins, C-Type/metabolism , Leukocytes/metabolism , Leukocytes/pathology , Luminescent Proteins/genetics , Luminescent Proteins/metabolism , Macrophages/metabolism , Male , Mannose Receptor , Mannose-Binding Lectins/metabolism , Mice, 129 Strain , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Middle Aged , Mutation , Phenotype , Receptors, CCR2/metabolism , Receptors, Cell Surface/metabolism
10.
J Am Heart Assoc ; 6(10)2017 Oct 20.
Article in English | MEDLINE | ID: mdl-29054843

ABSTRACT

BACKGROUND: Heart valves are dynamic structures that open and close over 100 000 times a day to maintain unidirectional blood flow during the cardiac cycle. Function is largely achieved by highly organized layers of extracellular matrix that provide the necessary biomechanical properties. Homeostasis of valve extracellular matrix is mediated by valve endothelial and interstitial cell populations, and although the embryonic origins of these cells are known, it is not clear how they are maintained after birth. The goal of this study is to examine the contribution of extracardiac cells to the aortic valve structure with aging using lineage tracing and bone marrow transplantation approaches. METHODS AND RESULTS: Immunohistochemistry and fate mapping studies using CD45-Cre mice show that the contribution of hematopoietic-derived cells to heart valve structures begins during embryogenesis and increases with age. Short-term (6 weeks), CD45-derived cells maintain CD45 expression and the majority coexpress monocyte markers (CD11b), whereas coexpression with valve endothelial (CD31) and interstitial (Vimentin) cell markers were infrequent. Similar molecular phenotypes are observed in heart valves of irradiated donor mice following transplantation of whole bone marrow cells, and engraftment efficiency in this tissue is age-dependent. CONCLUSIONS: Findings from this study demonstrate that the percentage of CD45-positive extracardiac cells reside within endothelial and interstitial regions of heart valve structures increases with age. In addition, bone transplantation studies show that engraftment is dependent on the age of the donor and age of the tissue environment of the recipient. These studies create a foundation for further work defining the role of extracardiac cells in homeostatic and diseased heart valves.


Subject(s)
Aortic Valve/cytology , Cell Lineage , Endothelial Cells/physiology , Hematopoietic Stem Cells/physiology , Age Factors , Aging , Animals , Aortic Valve/metabolism , Biomarkers/metabolism , Bone Marrow Transplantation , CD11b Antigen/metabolism , Cell Differentiation , Cell Survival , Endothelial Cells/metabolism , Green Fluorescent Proteins/biosynthesis , Green Fluorescent Proteins/genetics , Hematopoietic Stem Cells/metabolism , Integrases/genetics , Leukocyte Common Antigens/biosynthesis , Leukocyte Common Antigens/genetics , Mice, Inbred C57BL , Mice, Transgenic , Phenotype , Platelet Endothelial Cell Adhesion Molecule-1/metabolism , Stem Cell Niche , Vimentin/metabolism
11.
J Mol Cell Cardiol ; 100: 72-82, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27756541

ABSTRACT

Risk factors of heart valve disease are well defined and prolonged exposure throughout life leads to degeneration and dysfunction in up to 33% of the population. While aortic valve replacement remains the most common need for cardiovascular surgery particularly in those aged over 65, the underlying mechanisms of progressive deterioration are unknown. In other cardiovascular systems, a decline in endothelial cell integrity and function play a major role in promoting pathological changes, and while similar mechanisms have been speculated in the valves, studies to support this are lacking. The goal of this study was to examine age-related changes in valve endothelial cell (VEC) distribution, morphology, function and transcriptomes during critical stages of valve development (embryonic), growth (postnatal (PN)), maintenance (young adult) and aging (aging adult). Using a combination of in vivo mouse, and in vitro porcine assays we show that VEC function including, nitric oxide bioavailability, metabolism, endothelial-to-mesenchymal potential, membrane self-repair and proliferation decline with age. In addition, density of VEC distribution along the endothelium decreases and this is associated with changes in morphology, decreased cell-cell interactions, and increased permeability. These changes are supported by RNA-seq analysis showing that focal adhesion-, cell cycle-, and oxidative phosphorylation-associated biological processes are negatively impacted by aging. Furthermore, by performing high-throughput analysis we are able to report the differential and common transcriptomes of VECs at each time point that can provide insights into the mechanisms underlying age-related dysfunction. These studies suggest that maturation of heart valves over time is a multifactorial process and this study has identified several key parameters that may contribute to impairment of the valve to maintain critical structure-function relationships; leading to degeneration and disease.


Subject(s)
Endothelial Cells/metabolism , Heart Valves/metabolism , Heart Valves/pathology , Aging , Animals , Cell Communication , Cell Count , Cell Proliferation , Cells, Cultured , Cellular Senescence/genetics , Cluster Analysis , Endothelial Cells/ultrastructure , Gene Expression Profiling , Heart Valves/ultrastructure , Humans , Mice , Mice, Transgenic , Nitric Oxide/metabolism , Reactive Oxygen Species/metabolism , Transcriptome
12.
J Cardiovasc Dev Dis ; 2(3): 214-232, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26527432

ABSTRACT

The heart valve interstitial cell (VIC) population is dynamic and thought to mediate lay down and maintenance of the tri-laminar extracellular matrix (ECM) structure within the developing and mature valve throughout life. Disturbances in the contribution and distribution of valve ECM components are detrimental to biomechanical function and associated with disease. This pathological process is associated with activation of resident VICs that in the absence of disease reside as quiescent cells. While these paradigms have been long standing, characterization of this abundant and ever-changing valve cell population is incomplete. Here we examine the expression pattern of Smooth muscle α-actin, Periostin, Twist1 and Vimentin in cultured VICs, heart valves from healthy embryonic, postnatal and adult mice, as well as mature valves from human patients and established mouse models of disease. We show that the VIC population is highly heterogeneous and phenotypes are dependent on age, species, location, and disease state. Furthermore, we identify phenotypic diversity across common models of mitral valve disease. These studies significantly contribute to characterizing the VIC population in health and disease and provide insights into the cellular dynamics that maintain valve structure in healthy adults and mediate pathologic remodeling in disease states.

SELECTION OF CITATIONS
SEARCH DETAIL
...