Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nature ; 619(7969): 317-322, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37438590

ABSTRACT

Plastic debris is thought to be widespread in freshwater ecosystems globally1. However, a lack of comprehensive and comparable data makes rigorous assessment of its distribution challenging2,3. Here we present a standardized cross-national survey that assesses the abundance and type of plastic debris (>250 µm) in freshwater ecosystems. We sample surface waters of 38 lakes and reservoirs, distributed across gradients of geographical position and limnological attributes, with the aim to identify factors associated with an increased observation of plastics. We find plastic debris in all studied lakes and reservoirs, suggesting that these ecosystems play a key role in the plastic-pollution cycle. Our results indicate that two types of lakes are particularly vulnerable to plastic contamination: lakes and reservoirs in densely populated and urbanized areas and large lakes and reservoirs with elevated deposition areas, long water-retention times and high levels of anthropogenic influence. Plastic concentrations vary widely among lakes; in the most polluted, concentrations reach or even exceed those reported in the subtropical oceanic gyres, marine areas collecting large amounts of debris4. Our findings highlight the importance of including lakes and reservoirs when addressing plastic pollution, in the context of pollution management and for the continued provision of lake ecosystem services.


Subject(s)
Lakes , Plastics , Water Pollution , Water Supply , Ecosystem , Lakes/chemistry , Plastics/analysis , Plastics/classification , Water Pollution/analysis , Water Pollution/statistics & numerical data , Surveys and Questionnaires , Urbanization , Human Activities
2.
Plants (Basel) ; 11(24)2022 Dec 10.
Article in English | MEDLINE | ID: mdl-36559577

ABSTRACT

Monitoring invasive plant species is a crucial task to assess their presence in affected ecosystems. However, it is a laborious and complex task as it requires vast surface areas, with difficult access, to be surveyed. Remotely sensed data can be a great contribution to such operations, especially for clearly visible and predominant species. In the scope of this study, water hyacinth (Eichhornia crassipes) was monitored in the Lower Mondego region (Portugal). For this purpose, Sentinel-2 satellite data were explored enabling us to follow spatial patterns in three water channels from 2018 to 2021. By applying a straightforward and effective methodology, it was possible to estimate areas that could contain water hyacinth and to obtain the total surface area occupied by this invasive species. The normalized difference vegetation index (NDVI) was used for this purpose. It was verified that the occupation of this invasive species over the study area exponentially increases from May to October. However, this increase was not verified in 2021, which could be a consequence of the adopted mitigation measures. To provide the results of this study, the methodology was applied through a semi-automatic geographic information system (GIS) application. This tool enables researchers and ecologists to apply the same approach in monitoring water hyacinth or any other invasive plant species in similar or different contexts. This methodology proved to be more effective than machine learning approaches when applied to multispectral data acquired with an unmanned aerial vehicle. In fact, a global accuracy greater than 97% was achieved using the NDVI-based approach, versus 93% when using the machine learning approach (above 93%).

SELECTION OF CITATIONS
SEARCH DETAIL
...