Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 45
Filter
1.
Nat Commun ; 15(1): 2225, 2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38472177

ABSTRACT

Single-particle cryo-EM is widely used to determine enzyme-nucleosome complex structures. However, cryo-EM sample preparation remains challenging and inconsistent due to complex denaturation at the air-water interface (AWI). Here, to address this issue, we develop graphene-oxide-coated EM grids functionalized with either single-stranded DNA (ssDNA) or thiol-poly(acrylic acid-co-styrene) (TAASTY) co-polymer. These grids protect complexes between the chromatin remodeler SNF2h and nucleosomes from the AWI and facilitate collection of high-quality micrographs of intact SNF2h-nucleosome complexes in the absence of crosslinking. The data yields maps ranging from 2.3 to 3 Å in resolution. 3D variability analysis reveals nucleotide-state linked conformational changes in SNF2h bound to a nucleosome. In addition, the analysis provides structural evidence for asymmetric coordination between two SNF2h protomers acting on the same nucleosome. We envision these grids will enable similar detailed structural analyses for other enzyme-nucleosome complexes and possibly other protein-nucleic acid complexes in general.


Subject(s)
Graphite , Nucleosomes , Graphite/chemistry , Cryoelectron Microscopy , Water
2.
bioRxiv ; 2023 Jun 20.
Article in English | MEDLINE | ID: mdl-37546986

ABSTRACT

Single-particle cryo-EM is widely used to determine enzyme-nucleosome complex structures. However, cryo-EM sample preparation remains challenging and inconsistent due to complex denaturation at the air-water interface (AWI). To address this issue, we developed graphene-oxide-coated EM grids functionalized with either single-stranded DNA (ssDNA) or thiol-poly(acrylic acid-co-styrene) (TAASTY) co-polymer. These grids protect complexes between the chromatin remodeler SNF2h and nucleosomes from the AWI and facilitated collection of high-quality micrographs of intact SNF2h-nucleosome complexes in the absence of crosslinking. The data yields maps ranging from 2.3 to 3 Å in resolution. 3D variability analysis reveals nucleotide-state linked conformational changes in SNF2h bound to a nucleosome. In addition, the analysis provides structural evidence for asymmetric coordination between two SNF2h protomers acting on the same nucleosome. We envision these grids will enable similar detailed structural analyses for other enzyme-nucleosome complexes and possibly other protein-nucleic acid complexes in general.

3.
Macromolecules ; 55(17): 7498-7511, 2022 Sep 13.
Article in English | MEDLINE | ID: mdl-36118599

ABSTRACT

Designing yield stress fluids to exhibit desired functional properties is an integral challenge in many applications such as 3D printing, drilling, food formulation, fiber spinning, adhesives, and injectable biomaterials. Extensibility in particular has been found to be a highly beneficial characteristic for materials in these applications; however, few highly extensible, high water content materials have been reported to date. Herein we engineer a class of high water content nanocomposite hydrogel materials leveraging multivalent, noncovalent, polymer-nanoparticle (PNP) interactions between modified cellulose polymers and biodegradable nanoparticles. We show that modulation of the chemical composition of the PNP hydrogels controls the dynamic cross-linking interactions within the polymer network and directly impacts yielding and viscoelastic responses. These materials can be engineered to stretch up to 2000% strain and occupy an unprecedented property regime for extensible yield stress fluids. Moreover, a dimensional analysis of the relationships between extensibility and the relaxation and recovery time scales of these nanocomposite hydrogels uncovers generalizable design criteria that will be critical for future development of extensible materials.

4.
Trials ; 23(1): 593, 2022 Jul 23.
Article in English | MEDLINE | ID: mdl-35870999

ABSTRACT

BACKGROUND: Trauma-focused cognitive-behavioural treatments have been proven to be effective for reducing symptoms in female survivors of intimate partner violence (IPV), although they still present some difficulties (e.g. significant drop-out rates, low adherence). Based on existing evidence about the difficulty of accessing memories of positive experiences among these women, we considered integrating positive memory evocation in trauma-focused treatments. The present study aims to test the effect of adding a positive memory module to trauma-focused CBT for female survivors of IPV. METHODS: The study is a single-blind, randomized controlled trial (RCT) comparing two trauma-focused CBT (with and without a positive memory module) for female survivors of IPV and a wait-list condition (superiority trial), including pretreatment and posttreatment measures, and follow-ups at 3, 6 and 12 months. Assessors of treatment outcome will be blinded to the trial arm. We aim to recruit 135 participants who will be randomized to one of the experimental conditions. The primary outcome is PTSD symptom severity. Secondary outcome measures include IPV, attitudes towards IPV, posttraumatic cognitions, centrality of trauma, self-concept, positive and negative affect, depression, anxiety, emotional dysregulation or health-related quality of life, as well as satisfaction with treatment. Moreover, adherence to and satisfaction with treatment will be considered. DISCUSSION: This study first analyses the effect of including positive memory evocation into a trauma-focused treatment for female survivors of IPV. This strategy aims to improve the effect of the treatments and enhance the healing of the trauma by developing a more integrated and emotionally modulated autobiographical narrative that contributes to the recovery and well-being of the victims. TRIAL REGISTRATION: ISRCTN73702156 . Registered on 10 March 2022.


Subject(s)
Cognitive Behavioral Therapy , Intimate Partner Violence , Stress Disorders, Post-Traumatic , Cognition , Cognitive Behavioral Therapy/methods , Female , Humans , Intimate Partner Violence/psychology , Randomized Controlled Trials as Topic , Stress Disorders, Post-Traumatic/diagnosis , Stress Disorders, Post-Traumatic/psychology , Stress Disorders, Post-Traumatic/therapy , Survivors/psychology
5.
Clin Exp Rheumatol ; 40(11): 2018-2022, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35200120

ABSTRACT

OBJECTIVES: To establish the value of a modified Disease Activity score with Optical Spectral Transmission score (DAS-OST) without joint counts but with a HandScan score, versus that of DAS28, to classify rheumatoid arthritis (RA) as active versus inactive, with as reference standard the rheumatologist's clinical classification. METHODS: RA patients with at least one HandScan and DAS28 measurement performed at the same visit were included. Data was extracted from medical records, as was the clinical interpretation as active or inactive RA by the rheumatologist. Logistic regression analyses were performed to calculate areas under the receiver operating characteristics (AU-ROC) curves. The clinical interpretation was used as reference standard in all analyses, and disease activity measures were used as predictor variables. The performance of predictor variables (AU-ROCs) was compared. RESULTS: The data of 1505 RA patients were used for analyses. The highest AU-ROC of 0.88 (95%CI 0.85-0.90) was shown for DAS28; AU-ROC of DAS-OST was 0.78 (95%CI 0.75-0.81), difference 0.10, p<0.01. CONCLUSIONS: Compared to DAS28, DAS-OST classified RA statistically significantly less well as active versus inactive, when using the clinical classification as reference standard. However, a DAS-modification without joint scores might have a place in strategies limiting routine outpatients' visits to the rheumatologist.


Subject(s)
Arthritis, Rheumatoid , Humans , Arthritis, Rheumatoid/diagnostic imaging , Arthritis, Rheumatoid/drug therapy , ROC Curve , Severity of Illness Index
6.
ACS Biomater Sci Eng ; 7(9): 4221-4229, 2021 09 13.
Article in English | MEDLINE | ID: mdl-34510910

ABSTRACT

Biotherapeutics currently dominate the landscape of new drugs because of their exceptional potency and selectivity. Yet, the intricate molecular structures that give rise to these beneficial qualities also render them unstable in formulation. Hydrogels have shown potential as stabilizing excipients for biotherapeutic drugs, providing protection against harsh thermal conditions experienced during distribution and storage. In this work, we report the utilization of a cellulose-based supramolecular hydrogel formed from polymer-nanoparticle (PNP) interactions to encapsulate and stabilize insulin, an important biotherapeutic used widely to treat diabetes. Encapsulation of insulin in these hydrogels prevents insulin aggregation and maintains insulin bioactivity through stressed aging conditions of elevated temperature and continuous agitation for over 28 days. Further, insulin can be easily recovered by dilution of these hydrogels for administration at the point of care. This supramolecular hydrogel system shows promise as a stabilizing excipient to reduce the cold chain dependence of insulin and other biotherapeutics.


Subject(s)
Biological Products , Nanoparticles , Hydrogels , Insulin , Polymers
7.
Biomacromolecules ; 22(8): 3386-3395, 2021 08 09.
Article in English | MEDLINE | ID: mdl-34213889

ABSTRACT

There are 150 million people with diabetes worldwide who require insulin replacement therapy, and the prevalence of diabetes is rising the fastest in middle- and low-income countries. The current formulations require costly refrigerated transport and storage to prevent loss of insulin integrity. This study shows the development of simple "drop-in" amphiphilic copolymer excipients to maintain formulation integrity, bioactivity, pharmacokinetics, and pharmacodynamics for over 6 months when subjected to severe stressed aging conditions that cause current commercial formulation to fail in under 2 weeks. Further, when these copolymers are added to Humulin R (Eli Lilly) in original commercial packaging, they prevent insulin aggregation for up to 4 days at 50 °C compared to less than 1 day for Humulin R alone. These copolymers demonstrate promise as simple formulation additives to increase the cold chain resilience of commercial insulin formulations, thereby expanding global access to these critical drugs for treatment of diabetes.


Subject(s)
Diabetes Mellitus , Insulin , Excipients , Humans , Insulin, Regular, Human , Refrigeration
8.
Biomacromolecules ; 22(8): 3565-3573, 2021 08 09.
Article in English | MEDLINE | ID: mdl-34314146

ABSTRACT

Proteins are an impactful class of therapeutics but can exhibit suboptimal therapeutic performance, arising from poor control over the timescale of clearance. Covalent PEGylation is one established strategy to extend circulation time but often at the cost of reduced activity and increased immunogenicity. Supramolecular PEGylation may afford similar benefits without necessitating that the protein be permanently modified with a polymer. Here, we show that insulin pharmacokinetics can be modulated by tuning the affinity-directed dynamics of a host-guest motif used to non-covalently endow insulin with a poly(ethylene glycol) (PEG) chain. When administered subcutaneously, supramolecular PEGylation with higher binding affinities extends the time of total insulin exposure systemically. Pharmacokinetic modeling reveals that the extension in the duration of exposure arises specifically from decreased absorption from the subcutaneous depot governed directly by the affinity and dynamics of host-guest exchange. The lifetime of the supramolecular interaction thus dictates the rate of absorption, with negligible impact attributed to association of the PEG upon rapid dilution of the supramolecular complex in circulation. This modular approach to supramolecular PEGylation offers a powerful tool to tune protein pharmacokinetics in response to the needs of different disease applications.


Subject(s)
Polyethylene Glycols , Polymers , Insulin , Proteins
9.
J Biomed Mater Res A ; 109(11): 2173-2186, 2021 11.
Article in English | MEDLINE | ID: mdl-33955657

ABSTRACT

Vaccines are critical for combating infectious diseases across the globe. Influenza, for example, kills roughly 500,000 people annually worldwide, despite annual vaccination campaigns. Efficacious vaccines must elicit a robust and durable antibody response, and poor efficacy often arises from inappropriate temporal control over antigen and adjuvant presentation to the immune system. In this work, we sought to exploit the immune system's natural response to extended pathogen exposure during infection by designing an easily administered slow-delivery influenza vaccine platform. We utilized an injectable and self-healing polymer-nanoparticle (PNP) hydrogel platform to prolong the co-delivery of vaccine components to the immune system. We demonstrated that these hydrogels exhibit unique dynamic physical characteristics whereby physicochemically distinct influenza hemagglutinin antigen and a toll-like receptor 7/8 agonist adjuvant could be co-delivered over prolonged timeframes that were tunable through simple alteration of the gel formulation. We show a relationship between hydrogel physical properties and the resulting immune response to immunization. When administered in mice, hydrogel-based vaccines demonstrated enhancements in the magnitude and duration of humoral immune responses compared to alum, a widely used clinical adjuvant system. We found stiffer hydrogel formulations exhibited slower release and resulted in the greatest improvements to the antibody response while also enabling significant adjuvant dose sparing. In summary, this work introduces a simple and effective vaccine delivery platform that increases the potency and durability of influenza subunit vaccines.


Subject(s)
Adjuvants, Immunologic , Delayed-Action Preparations , Hydrogels , Immunity, Humoral , Influenza Vaccines , Adjuvants, Immunologic/chemistry , Adjuvants, Immunologic/pharmacology , Animals , Delayed-Action Preparations/chemistry , Delayed-Action Preparations/pharmacology , Hydrogels/chemistry , Hydrogels/pharmacology , Influenza Vaccines/chemistry , Influenza Vaccines/immunology , Influenza Vaccines/pharmacology , Mice , Vaccines, Subunit/chemistry , Vaccines, Subunit/immunology , Vaccines, Subunit/pharmacology
10.
Clin Transl Med ; 11(4): e387, 2021 04.
Article in English | MEDLINE | ID: mdl-33931977

ABSTRACT

Understanding how automated insulin delivery (AID) algorithm features impact glucose control under full closed loop delivery represents a critical step toward reducing patient burden by eliminating the need for carbohydrate entries at mealtimes. Here, we use a pig model of diabetes to compare AndroidAPS and Loop open-source AID systems without meal announcements. Overall time-in-range (70-180 mg/dl) for AndroidAPS was 58% ± 5%, while time-in-range for Loop was 35% ± 5%. The effect of the algorithms on time-in-range differed between meals and overnight. During the overnight monitoring period, pigs had an average time-in-range of 90% ± 7% when on AndroidAPS compared to 22% ± 8% on Loop. Time-in-hypoglycemia also differed significantly during the lunch meal, whereby pigs running AndroidAPS spent an average of 1.4% (+0.4/-0.8)% in hypoglycemia compared to 10% (+3/-6)% for those using Loop. As algorithm design for closed loop systems continues to develop, the strategies employed in the OpenAPS algorithm (known as oref1) as implemented in AndroidAPS for unannounced meals may result in a better overall control for full closed loop systems.


Subject(s)
Diabetes Mellitus, Experimental/drug therapy , Insulin Infusion Systems , Algorithms , Animals , Blood Glucose/analysis , Diabetes Mellitus, Experimental/blood , Disease Models, Animal , Female , Glycemic Control/methods , Insulin/administration & dosage , Insulin/therapeutic use , Swine
11.
ACS Biomater Sci Eng ; 7(5): 1889-1899, 2021 05 10.
Article in English | MEDLINE | ID: mdl-33404236

ABSTRACT

The sustained release of vaccine cargo has been shown to improve humoral immune responses to challenging pathogens such as influenza. Extended codelivery of antigen and adjuvant prolongs germinal center reactions, thus improving antibody affinity maturation and the ability to neutralize the target pathogen. Here, we develop an injectable, physically cross-linked polymer-nanoparticle (PNP) hydrogel system to prolong the local codelivery of hemagglutinin and a toll-like receptor 7/8 agonist (TLR7/8a) adjuvant. By tethering the TLR7/8a to a NP motif within the hydrogels (TLR7/8a-NP), the dynamic mesh of the PNP hydrogels enables codiffusion of the adjuvant and protein antigen (hemagglutinin), therefore enabling sustained codelivery of these two physicochemically distinct molecules. We show that subcutaneous delivery of PNP hydrogels carrying hemagglutinin and TLR7/8a-NP in mice improves the magnitude and duration of antibody titers in response to a single injection vaccination compared to clinically used adjuvants. Furthermore, the PNP gel-based slow delivery of influenza vaccines led to increased breadth of antibody responses against future influenza variants, including a future pandemic variant, compared to clinical adjuvants. In summary, this work introduces a simple and effective vaccine delivery platform that increases the potency and durability of influenza subunit vaccines.


Subject(s)
Hemagglutinins/administration & dosage , Influenza Vaccines , Nanoparticles , Toll-Like Receptor 7/agonists , Toll-Like Receptor 8/agonists , Vaccine Potency , Animals , Hydrogels , Membrane Glycoproteins , Mice , Polymers , Vaccination
12.
Biomacromolecules ; 22(1): 86-94, 2021 01 11.
Article in English | MEDLINE | ID: mdl-32786733

ABSTRACT

Controlled radical polymerization of vinyl monomers with multivinyl cross-linkers leads to the synthesis of highly branched polymers with controlled spatial density of functional chain ends. The resulting polymers synthesized in this manner have large dispersities resulting from a mixture of unreacted primary chains, low molecular weight branched species, and high molecular weight highly branched species. Through the use of fractional precipitation, we present a synthetic route to high molecular weight highly branched polymers that are absent of low molecular weight species and that contain reactivity toward amines for controlled postpolymerization modification. The controlled spatial density of functional moieties on these high molecular weight macromolecular constructs enable new functional biomaterials with the potential for application in regenerative medicine, immunoengineering, imaging, and controlled drug delivery.


Subject(s)
Biocompatible Materials , Polymers , Acrylamides , Molecular Structure , Polymerization
13.
ACS Cent Sci ; 6(10): 1800-1812, 2020 Oct 28.
Article in English | MEDLINE | ID: mdl-33145416

ABSTRACT

Vaccines aim to elicit a robust, yet targeted, immune response. Failure of a vaccine to elicit such a response arises in part from inappropriate temporal control over antigen and adjuvant presentation to the immune system. In this work, we sought to exploit the immune system's natural response to extended pathogen exposure during infection by designing an easily administered slow-delivery vaccine platform. We utilized an injectable and self-healing polymer-nanoparticle (PNP) hydrogel platform to prolong the codelivery of vaccine components to the immune system. We demonstrated that these hydrogels exhibit unique delivery characteristics, whereby physicochemically distinct compounds (such as antigen and adjuvant) could be codelivered over the course of weeks. When administered in mice, hydrogel-based sustained vaccine exposure enhanced the magnitude, duration, and quality of the humoral immune response compared to standard PBS bolus administration of the same model vaccine. We report that the creation of a local inflammatory niche within the hydrogel, coupled with sustained exposure of vaccine cargo, enhanced the magnitude and duration of germinal center responses in the lymph nodes. This strengthened germinal center response promoted greater antibody affinity maturation, resulting in a more than 1000-fold increase in antigen-specific antibody affinity in comparison to bolus immunization. In summary, this work introduces a simple and effective vaccine delivery platform that increases the potency and durability of subunit vaccines.

14.
Biomacromolecules ; 21(9): 3704-3712, 2020 09 14.
Article in English | MEDLINE | ID: mdl-32816460

ABSTRACT

Cancer immunotherapy can be augmented with toll-like receptor agonist (TLRa) adjuvants, which interact with immune cells to elicit potent immune activation. Despite their potential, use of many TLRa compounds has been limited clinically due to their extreme potency and lack of pharmacokinetic control, causing systemic toxicity from unregulated systemic cytokine release. Herein, we overcome these shortcomings by generating poly(ethylene glycol)-poly(lactic acid) (PEG-PLA) nanoparticles (NPs) presenting potent TLR7/8a moieties on their surface. The NP platform allows precise control of TLR7/8a valency and resulting surface presentation through self-assembly using nanoprecipitation. We hypothesize that the pharmacokinetic profile of the NPs minimizes systemic toxicity, localizing TLR7/8a presentation to the tumor bed and tumor-draining lymph nodes. In conjunction with antiprogrammed death-ligand 1 (anti-PD-L1) checkpoint blockade, peritumoral injection of TLR7/8a NPs slows tumor growth, extends survival, and decreases systemic toxicity in comparison to the free TLR7/8a in a murine colon adenocarcinoma model. These NPs constitute a modular platform for controlling pharmacokinetics of immunostimulatory molecules, resulting in increased potency and decreased toxicity.


Subject(s)
Nanoparticles , Neoplasms , Animals , B7-H1 Antigen , Immunotherapy , Mice , Mice, Inbred C57BL , Neoplasms/drug therapy , Toll-Like Receptor 7
15.
Sci Transl Med ; 12(550)2020 07 01.
Article in English | MEDLINE | ID: mdl-32611683

ABSTRACT

Insulin has been used to treat diabetes for almost 100 years; yet, current rapid-acting insulin formulations do not have sufficiently fast pharmacokinetics to maintain tight glycemic control at mealtimes. Dissociation of the insulin hexamer, the primary association state of insulin in rapid-acting formulations, is the rate-limiting step that leads to delayed onset and extended duration of action. A formulation of insulin monomers would more closely mimic endogenous postprandial insulin secretion, but monomeric insulin is unstable in solution using present formulation strategies and rapidly aggregates into amyloid fibrils. Here, we implement high-throughput-controlled radical polymerization techniques to generate a large library of acrylamide carrier/dopant copolymer (AC/DC) excipients designed to reduce insulin aggregation. Our top-performing AC/DC excipient candidate enabled the development of an ultrafast-absorbing insulin lispro (UFAL) formulation, which remains stable under stressed aging conditions for 25 ± 1 hours compared to 5 ± 2 hours for commercial fast-acting insulin lispro formulations (Humalog). In a porcine model of insulin-deficient diabetes, UFAL exhibited peak action at 9 ± 4 min, whereas commercial Humalog exhibited peak action at 25 ± 10 min. These ultrafast kinetics make UFAL a promising candidate for improving glucose control and reducing burden for patients with diabetes.


Subject(s)
Diabetes Mellitus, Type 2 , Insulin , Animals , Blood Glucose , Excipients , High-Throughput Screening Assays , Humans , Hypoglycemic Agents , Insulin Lispro , Swine
16.
Nat Biomed Eng ; 4(5): 507-517, 2020 05.
Article in English | MEDLINE | ID: mdl-32393892

ABSTRACT

Treatment of patients with diabetes with insulin and pramlintide (an amylin analogue) is more effective than treatment with insulin only. However, because mixtures of insulin and pramlintide are unstable and have to be injected separately, amylin analogues are only used by 1.5% of people with diabetes needing rapid-acting insulin. Here, we show that the supramolecular modification of insulin and pramlintide with cucurbit[7]uril-conjugated polyethylene glycol improves the pharmacokinetics of the dual-hormone therapy and enhances postprandial glucagon suppression in diabetic pigs. The co-formulation is stable for over 100 h at 37 °C under continuous agitation, whereas commercial formulations of insulin analogues aggregate after 10 h under similar conditions. In diabetic rats, the administration of the stabilized co-formulation increased the area-of-overlap ratio of the pharmacokinetic curves of pramlintide and insulin from 0.4 ± 0.2 to 0.7 ± 0.1 (mean ± s.d.) for the separate administration of the hormones. The co-administration of supramolecularly stabilized insulin and pramlintide better mimics the endogenous kinetics of co-secreted insulin and amylin, and holds promise as a dual-hormone replacement therapy.


Subject(s)
Diabetes Mellitus, Experimental/drug therapy , Drug Compounding , Glucagon/metabolism , Insulin/therapeutic use , Islet Amyloid Polypeptide/therapeutic use , Animals , Bridged-Ring Compounds/chemistry , Diffusion , Drug Administration Routes , Drug Stability , Hydrogen-Ion Concentration , Imidazoles/chemistry , Insulin/administration & dosage , Insulin/pharmacokinetics , Insulin/pharmacology , Islet Amyloid Polypeptide/administration & dosage , Islet Amyloid Polypeptide/pharmacokinetics , Islet Amyloid Polypeptide/pharmacology , Male , Polyethylene Glycols/chemistry , Rats, Sprague-Dawley , Signal Transduction/drug effects , Swine
17.
Org Biomol Chem ; 2020 May 27.
Article in English | MEDLINE | ID: mdl-32459261

ABSTRACT

Cucurbit[7,8]urils are known to form inclusion complexes with aromatic amino acids, hosting the hydrohobic side chains within the cavity and adjacent cations within the portal of the macrocyclic host. Here we show that cucurbit[7]uril binding with N-terminal phenylalanine significantly reduces the nucleophilicity of the amine, likely due to an increase in stability of the ammonium ion, rendering it unreactive at neutral pH. Using insulin as a model protein, we show that this supramolecular protection strategy can drive selectivity of N-terminal amine conjugation away from the preferred B chain N-terminal phenylalanine towards the A chain N-terminal glycine. Cucurbit[7]uril can therefore be used as a supramolecular protecting group for site-selective protein modification.

18.
Adv Ther (Weinh) ; 3(1)2020 Jan.
Article in English | MEDLINE | ID: mdl-32190729

ABSTRACT

Current "fast-acting" insulin analogues contain amino acid modifications meant to inhibit dimer formation and shift the equilibrium of association states toward the monomeric state. However, the insulin monomer is highly unstable and current formulation techniques require insulin to primarily exist as hexamers to prevent aggregation into inactive and immunogenic amyloids. Insulin formulation excipients have thus been traditionally selected to promote insulin association into the hexameric form to enhance formulation stability. This study exploits a novel excipient for the supramolecular PEGylation of insulin analogues, including aspart and lispro, to enhance the stability and maximize the prevalence of insulin monomers in formulation. Using multiple techniques, it is demonstrated that judicious choice of formulation excipients (tonicity agents and parenteral preservatives) enables insulin analogue formulations with 70-80% monomer and supramolecular PEGylation imbued stability under stressed aging for over 100 h without altering the insulin association state. Comparatively, commercial "fast-acting" formulations contain less than 1% monomer and remain stable for only 10 h under the same stressed aging conditions. This simple and effective formulation approach shows promise for next-generation ultrafast insulin formulations with a short duration of action that can reduce the risk of post-prandial hypoglycemia in the treatment of diabetes.

19.
Bioeng Transl Med ; 5(1): e10147, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31989036

ABSTRACT

Stem cell therapies have emerged as promising treatments for injuries and diseases in regenerative medicine. Yet, delivering stem cells therapeutically can be complicated by invasive administration techniques, heterogeneity in the injection media, and/or poor cell retention at the injection site. Despite these issues, traditional administration protocols using bolus injections in a saline solution or surgical implants of cell-laden hydrogels have highlighted the promise of cell administration as a treatment strategy. To address these limitations, we have designed an injectable polymer-nanoparticle (PNP) hydrogel platform exploiting multivalent, noncovalent interactions between modified biopolymers and biodegradable nanoparticles for encapsulation and delivery of human mesenchymal stem cells (hMSCs). hMSC-based therapies have shown promise due to their broad differentiation capacities and production of therapeutic paracrine signaling molecules. In this work, the fundamental hydrogel mechanical properties that enhance hMSC delivery processes are elucidated using basic in vitro models. Further, in vivo studies in immunocompetent mice reveal that PNP hydrogels enhance hMSC retention at the injection site and retain administered hMSCs locally for upwards of 2 weeks. Through both in vitro and in vivo experiments, we demonstrate a novel scalable, synthetic, and biodegradable hydrogel system that overcomes current limitations and enables effective cell delivery.

20.
Nat Biomed Eng ; 3(8): 611-620, 2019 08.
Article in English | MEDLINE | ID: mdl-31391596

ABSTRACT

Post-operative adhesions form as a result of normal wound healing processes following any type of surgery. In cardiac surgery, pericardial adhesions are particularly problematic during reoperations, as surgeons must release the adhesions from the surface of the heart before the intended procedure can begin, thereby substantially lengthening operation times and introducing risks of haemorrhage and injury to the heart and lungs during sternal re-entry and cardiac dissection. Here we show that a dynamically crosslinked supramolecular polymer-nanoparticle hydrogel, with viscoelastic and flow properties that enable spraying onto tissue as well as robust tissue adherence and local retention in vivo for two weeks, reduces the formation of pericardial adhesions. In a rat model of severe pericardial adhesions, the hydrogel markedly reduced the severity of the adhesions, whereas commercial adhesion barriers (including Seprafilm and Interceed) did not. The hydrogels also reduced the severity of cardiac adhesions (relative to untreated animals) in a clinically relevant cardiopulmonary-bypass model in sheep. This viscoelastic supramolecular polymeric hydrogel represents a promising clinical solution for the prevention of post-operative pericardial adhesions.


Subject(s)
Cardiac Surgical Procedures/methods , Hydrogels/chemistry , Pericardium/surgery , Polymers/chemistry , Tissue Adhesions , Animals , Cellulose, Oxidized , Hyaluronic Acid , Hydrogels/therapeutic use , Male , Models, Animal , Nanoparticles , Polymers/therapeutic use , Rats , Sheep
SELECTION OF CITATIONS
SEARCH DETAIL
...