Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Aging (Albany NY) ; 15(6): 1791-1807, 2023 03 22.
Article in English | MEDLINE | ID: mdl-36947705

ABSTRACT

Antibodies targeting the PD-1 receptor and its ligand PD-L1 have shown impressive responses in some tumors of bad prognosis. We hypothesized that, since immunosuppressive cells might present several immune checkpoints on their surface, the selective elimination of PD-L1 expressing cells could be efficacious in enabling the activation of antitumoral immune responses. To address this question, we developed an inducible suicidal knock-in mouse allele of Pd-l1 (PD-L1ATTAC) which allows for the tracking and specific elimination of PD-L1-expressing cells in adult tissues. Consistent with our hypothesis, elimination of PD-L1 expressing cells from the mouse peritoneum increased the septic response to lipopolysaccharide (LPS), due to an exacerbated inflammatory response to the endotoxin. In addition, mice depleted of PD-L1+ cells were resistant to colon cancer peritoneal allografts, which was associated with a loss of immunosuppressive B cells and macrophages, concomitant with an increase in activated cytotoxic CD8 T cells. Collectively, these results illustrate the usefulness of PD-L1ATTAC mice for research in immunotherapy and provide genetic support to the concept of targeting PD-L1 expressing cells in cancer.


Subject(s)
Antineoplastic Agents , Neoplasms , Mice , Animals , B7-H1 Antigen/genetics , Immunotherapy/methods , T-Lymphocytes, Cytotoxic , Cell Line, Tumor , CD8-Positive T-Lymphocytes , Tumor Microenvironment , Neoplasms/genetics , Neoplasms/therapy
2.
EMBO Mol Med ; 14(9): e15855, 2022 09 07.
Article in English | MEDLINE | ID: mdl-35861150

ABSTRACT

FBXW7 is one of the most frequently mutated tumor suppressors, deficiency of which has been associated with resistance to some anticancer therapies. Through bioinformatics and genome-wide CRISPR screens, we here reveal that FBXW7 deficiency leads to multidrug resistance (MDR). Proteomic analyses found an upregulation of mitochondrial factors as a hallmark of FBXW7 deficiency, which has been previously linked to chemotherapy resistance. Despite this increased expression of mitochondrial factors, functional analyses revealed that mitochondria are under stress, and genetic or chemical targeting of mitochondria is preferentially toxic for FBXW7-deficient cells. Mechanistically, the toxicity of therapies targeting mitochondrial translation such as the antibiotic tigecycline relates to the activation of the integrated stress response (ISR) in a GCN2 kinase-dependent manner. Furthermore, the discovery of additional drugs that are toxic for FBXW7-deficient cells showed that all of them unexpectedly activate a GCN2-dependent ISR regardless of their accepted mechanism of action. Our study reveals that while one of the most frequent mutations in cancer reduces the sensitivity to the vast majority of available therapies, it renders cells vulnerable to ISR-activating drugs.


Subject(s)
Protein Biosynthesis , Proteomics , Cell Line, Tumor , F-Box-WD Repeat-Containing Protein 7/genetics , F-Box-WD Repeat-Containing Protein 7/metabolism , Mutation , Up-Regulation
3.
Sci Signal ; 9(445): ra91, 2016 09 13.
Article in English | MEDLINE | ID: mdl-27625305

ABSTRACT

Among the various subtypes of acute myeloid leukemia (AML), those with chromosomal rearrangements of the MLL oncogene (AML-MLL) have a poor prognosis. AML-MLL tumor cells are resistant to current genotoxic therapies because of an attenuated response by p53, a protein that induces cell cycle arrest and apoptosis in response to DNA damage. In addition to chemicals that damage DNA, efforts have focused on targeting DNA repair enzymes as a general chemotherapeutic approach to cancer treatment. Here, we found that inhibition of the kinase ATR, which is the primary sensor of DNA replication stress, induced chromosomal breakage and death of mouse AML(MLL) cells (with an MLL-ENL fusion and a constitutively active N-RAS independently of p53. Moreover, ATR inhibition as a single agent exhibited antitumoral activity, both reducing tumor burden after establishment and preventing tumors from growing, in an immunocompetent allograft mouse model of AML(MLL) and in xenografts of a human AML-MLL cell line. We also found that inhibition of ATM, a kinase that senses DNA double-strand breaks, also promoted the survival of the AML(MLL) mice. Collectively, these data indicated that ATR or ATM inhibition represent potential therapeutic strategies for the treatment of AML, especially MLL-driven leukemias.


Subject(s)
Ataxia Telangiectasia Mutated Proteins , Gene Rearrangement , Histone-Lysine N-Methyltransferase , Leukemia, Myeloid, Acute , Myeloid-Lymphoid Leukemia Protein , Neoplasms, Experimental , Animals , Ataxia Telangiectasia Mutated Proteins/antagonists & inhibitors , Ataxia Telangiectasia Mutated Proteins/genetics , Ataxia Telangiectasia Mutated Proteins/metabolism , Histone-Lysine N-Methyltransferase/genetics , Histone-Lysine N-Methyltransferase/metabolism , Humans , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/enzymology , Leukemia, Myeloid, Acute/genetics , Mice , Myeloid-Lymphoid Leukemia Protein/genetics , Myeloid-Lymphoid Leukemia Protein/metabolism , Neoplasms, Experimental/drug therapy , Neoplasms, Experimental/enzymology , Neoplasms, Experimental/genetics , Xenograft Model Antitumor Assays
SELECTION OF CITATIONS
SEARCH DETAIL
...