Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Hazard Mater ; 473: 134650, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38776816

ABSTRACT

Spent mushroom substrate (SMS) holds valuable microbiota that can be useful in remediating polluted soils with hydrocarbons. However, the microorganisms behind the bioremediation process remain uncertain. In this work, a bioremediation assay of total petroleum hydrocarbons (TPHs) polluted soil by SMS application was performed to elucidate the microorganisms and consortia involved in biodegradation by a metabarcoding analysis. Untreated polluted soil was compared to seven bioremediation treatments by adding SMS of Agaricus bisporus, Pleurotus eryngii, Pleurotus ostreatus, and combinations. Soil microbial activity, TPH biodegradation, taxonomic classification, and predictive functional analysis were evaluated in the microbiopiles at 60 days. Different metagenomics approaches were performed to understand the impact of each SMS on native soil microbiota and TPHs biodegradation. All SMSs enhanced the degradation of aliphatic and aromatic hydrocarbons, being A. bisporus the most effective, promoting an efficient consortium constituted by the bacterial families Alcanivoraceae, Alcaligenaceae, and Dietziaceae along with the fungal genera Scedosporium and Aspergillus. The predictive 16 S rRNA gene study partially explained the decontamination efficacy by observing changes in the taxonomic structure of bacteria and fungi, and changes in the potential profiles of estimated degradative genes across the different treatments. This work provides new insights into TPHs bioremediation.


Subject(s)
Bacteria , Biodegradation, Environmental , Hydrocarbons , Petroleum , Soil Microbiology , Soil Pollutants , Soil Pollutants/metabolism , Hydrocarbons/metabolism , Petroleum/metabolism , Bacteria/metabolism , Bacteria/genetics , Bacteria/classification , Agaricus/metabolism , Fungi/metabolism , Fungi/genetics , Pleurotus/metabolism , Agaricales/metabolism , RNA, Ribosomal, 16S/genetics
2.
J Fungi (Basel) ; 9(12)2023 Dec 16.
Article in English | MEDLINE | ID: mdl-38132804

ABSTRACT

Soil contamination constitutes a significant threat to the health of soil ecosystems in terms of complexity, toxicity, and recalcitrance. Among all contaminants, aliphatic petroleum hydrocarbons (APH) are of particular concern due to their abundance and persistence in the environment and the need of remediation technologies to ensure their removal in an environmentally, socially, and economically sustainable way. Soil remediation technologies presently available on the market to tackle soil contamination by petroleum hydrocarbons (PH) include landfilling, physical treatments (e.g., thermal desorption), chemical treatments (e.g., oxidation), and conventional bioremediation. The first two solutions are costly and energy-intensive approaches. Conversely, bioremediation of on-site excavated soil arranged in biopiles is a more sustainable procedure. Biopiles are engineered heaps able to stimulate microbial activity and enhance biodegradation, thus ensuring the removal of organic pollutants. This soil remediation technology is currently the most environmentally friendly solution available on the market, as it is less energy-intensive and has no detrimental impact on biological soil functions. However, its major limitation is its low removal efficiency, especially for long-chain hydrocarbons (LCH), compared to thermal desorption. Nevertheless, the use of fungi for remediation of environmental contaminants retains the benefits of bioremediation treatments, including low economic, social, and environmental costs, while attaining removal efficiencies similar to thermal desorption. Mycoremediation is a widely studied technology at lab scale, but there are few experiences at pilot scale. Several factors may reduce the overall efficiency of on-site mycoremediation biopiles (mycopiles), and the efficiency detected in the bench scale. These factors include the bioavailability of hydrocarbons, the selection of fungal species and bulking agents and their application rate, the interaction between the inoculated fungi and the indigenous microbiota, soil properties and nutrients, and other environmental factors (e.g., humidity, oxygen, and temperature). The identification of these factors at an early stage of biotreatability experiments would allow the application of this on-site technology to be refined and fine-tuned. This review brings together all mycoremediation work applied to aliphatic petroleum hydrocarbons (APH) and identifies the key factors in making mycoremediation effective. It also includes technological advances that reduce the effect of these factors, such as the structure of mycopiles, the application of surfactants, and the control of environmental factors.

3.
J Sci Food Agric ; 102(1): 167-174, 2022 Jan 15.
Article in English | MEDLINE | ID: mdl-34080199

ABSTRACT

BACKGROUND: Nowadays a significant amount of land contaminated with toxic elements is being used for agriculture, posing a serious risk of crop contamination and toxicity. Several methodologies are being used to remediate soil contamination, including the use of amendments such as biochar. This work evaluated the effects of biochar combined with different fertirrigations (water, a conventional fertilizer solution, or a fertilizer solution with a commercial biostimulant derived from leonardite) on the availability of toxic elements and nutrients for pepper cultivated in a soil contaminated with As, Cd, Pb, and Zn. RESULTS: Irrigation with fertilizer solutions improved plant growth regardless of the biochar amendment. Biochar decreased the bioavailability of Cu and Pb in soil and the Cu content in pepper leaves. Combined with fertilization, biochar also decreased plant As and Pb content. Biochar combined with biostimulant decreased the bioavailable content of Cd in soil and its uptake by pepper plants. CONCLUSION: The use of biochar and biostimulant presented advantages for plant production in a non-suitable scenario of nutrient scarcity and contamination. © 2021 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Subject(s)
Capsicum/metabolism , Charcoal/chemistry , Crop Production/methods , Fertilizers/analysis , Nutrients/chemistry , Soil Pollutants/metabolism , Adsorption , Biological Transport , Cadmium/chemistry , Cadmium/metabolism , Capsicum/chemistry , Capsicum/growth & development , Lead/analysis , Lead/chemistry , Lead/metabolism , Nutrients/metabolism , Plant Leaves/chemistry , Plant Leaves/growth & development , Plant Leaves/metabolism , Soil/chemistry , Soil Pollutants/chemistry , Zinc/chemistry , Zinc/metabolism
4.
Environ Sci Pollut Res Int ; 28(6): 7032-7042, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33025433

ABSTRACT

A double strategy based on the removal of sulfonamide antibiotics by Pleurotus ostreatus and adsorption on spent mushroom substrate was assessed to reclaim contaminated wastewater. P. ostreatus was firstly tested in a liquid medium fortified with five sulfonamides: sulfamethoxazole, sulfadiazine, sulfathiazole, sulfapyridine and sulfamethazine, to evaluate its capacity to remove them and to test for any adverse effects on fungal growth and for any reduction in residual antibiotic activity. P. ostreatus was effective in removing sulfonamides up to 83 to 91% of the applied doses over 14 days. The antibiotic activity of the sulfonamide residues was reduced by 50%. Sulfamethoxazole transformation products by laccase were identified, and the degradation pathway was proposed. In addition, P. ostreatus growth on a semi-solid medium of spent mushroom substrate and malt extract agar was used to develop a biofilter for the removal of sulfonamides from real wastewater. The biofilter was able to remove more than 90% of the sulfonamide concentrations over 24 h by combining adsorption and biodegradation mechanisms.


Subject(s)
Agaricales , Pleurotus , Biodegradation, Environmental , Laccase , Sulfonamides
5.
Sci Total Environ ; 645: 146-155, 2018 Dec 15.
Article in English | MEDLINE | ID: mdl-30016708

ABSTRACT

The antibiotic tetracycline, is considered a contaminant of emerging concern due to its presence in wastewater effluents, surface waters and groundwaters. Adsorption of tetracycline on soils and clays has been extensively studied to remove the contaminant from the water. A decreasing adsorption as the pH increases is normally reported in the pH range 3-9. However, adsorption isotherms performed on a commercial stevensite presented increasing adsorption with the increasing pH, in the pH range 2-8. This is very interesting since the pH in natural and wasterwaters are normally in the range 6-8. A laboratory design of a geofilter using a mixture of sand and stevensite was tested against an inflow solution of tetracycline 1 g/L, NaNO3 0.1 M and pH = 7 in an advective transport cell experiment. The number of tetracycline molecules exceed by >3 times the number exchangeable positions in the stevensite geofilter. Under these conditions, the TC adsorption on the geofilter reaches 590 mg/g, surpassing the retention capacity of most adsorbents found in literature. Besides, the tetracycline is completely desorbed by the inflow of a saline solution (Mg(NO3)2 0.5 M, at pH = 2) with capacity to replace the exchangeable positions, thus, recovering the geofilter and the tetracycline.


Subject(s)
Tetracycline/analysis , Water Pollutants, Chemical/analysis , Water Purification/methods , Adsorption , Anti-Bacterial Agents , Hydrogen-Ion Concentration
SELECTION OF CITATIONS
SEARCH DETAIL
...