Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Biol Macromol ; 183: 1136-1144, 2021 Jul 31.
Article in English | MEDLINE | ID: mdl-33932423

ABSTRACT

The probiotics are extremely sensitive to various environmental factors, which imposes limitation on their health and functional effectiveness. Thus, development of delivery system for protection of viable cells while passing through different stages of the human digestion system is key factor in application of probiotic products. In our study, the effects of several polysaccharides such as alginate, κ-carrageenan, locust bean gum, gellan gum, xanthan gum and their combination with various prebiotic components (resistant starch, lactulose, lactosucrose) on encapsulation of probiotic Lactobacillus casei 01 strain were studied. Both regular and unregular beads with size distributions from 2 mm up to 5 mm were obtained. The encapsulation efficiencies varied from 64.4% up to 79%. Based on the texture's profiles, the capsules can be grouped into 5 clusters with squared Euclidean distance 3.5. Meanwhile, the starch-alginate and the lactosucrose LS55L - alginate beads were found to be the most stable and to have massive textural properties, whereas the gellan gum - xanthan gum and the chitosan coated alginate beads emerged as the softest. Encapsulation significantly improved the degree of gastric tolerance of probiotic cells even in the presence of pepsin. The INFOGEST in vitro digestion protocol was adapted to investigate the protection effects of different capsules. The highest survival (with loss rate of lower than 1 log CFU/g) was observed in the case of the cells encapsulated in starch-alginate beads. Moreover, the alginate microcapsules combined with lactosucrose LS55L also provided very promising shield for probiotics from the low pH of gastric conditions. Our findings suggest that incorporation of prebiotics into alginate-base encapsulation would be good idea in development of micro delivery systems that helps the survival of probiotics and their delivery to the target sites of action in human body.


Subject(s)
Lacticaseibacillus casei/physiology , Polysaccharides/chemistry , Probiotics/chemistry , Drug Compounding , Drug Stability , Humans , Hydrogen-Ion Concentration , Lactulose/chemistry , Particle Size , Prebiotics , Resistant Starch , Saccharin/chemistry , Trisaccharides/chemistry
2.
Probiotics Antimicrob Proteins ; 13(2): 484-494, 2021 04.
Article in English | MEDLINE | ID: mdl-32851584

ABSTRACT

Consumption of dairy products is one of the most natural ways to introduce probiotics. However, the beneficial effects of the probiotics might depend on the administration form. The aim of this study was to investigate the beneficial properties of two probiotic strains: Bifidobacterium animalis subsp. lactis (BB-12) and Lactobacillus acidophilus (LA-5) in different administration forms (capsules and yogurt). First, in vitro resistance to gastrointestinal condition, surface properties, and immunomodulation capacities were determined. Then, the anti-inflammatory properties of the probiotic strains administrated on yogurt or capsules were tested in a dinitrobenzene sulfonic acid (DNBS)-induced colitis mouse model. The survival rates of BB-12 and LA-5 strains to gastrointestinal conditions were slightly higher when yogurt was used as carrier. They showed most affinity to hexane (no-polar basic solvent) than ethyl-acetate (polar basic solvent). BB-12 showed the higher binding capacity to HT-29, Caco-2, and mucin. Both probiotic candidates suppress the secretion of IL-8 secretion by HT-29-TNF-α stimulated cells. Finally, administration of BB-12 and LA-5 strains improve colitis in mice. They protect against weight loss, inflammation, and hyperpermeability induced by DNBS. However, these anti-inflammatory effects were limited when mice were treated with the probiotic strain on a yogurt matrix. Overall results indicate that BB-12 and LA-5 positive properties are compromised depending on the matrix. Consequently, the selection of an appropriate matrix is an important criterion to conserve the positive benefits of these probiotic strains.


Subject(s)
Bifidobacterium animalis , Colitis , Lactobacillus acidophilus , Probiotics , Animals , Caco-2 Cells , Capsules , Colitis/chemically induced , Colitis/therapy , HT29 Cells , Humans , Mice , Probiotics/administration & dosage , Yogurt
3.
J Sci Food Agric ; 99(11): 5187-5194, 2019 Aug 30.
Article in English | MEDLINE | ID: mdl-31032927

ABSTRACT

BACKGROUND: Sprouting is known to improve cereal and pulse nutritional properties. However, several outbreaks of illness have been reported after raw sprout consumption. This research aimed to improve wheat sprout hygienic properties through the use of zinc diacetate. Sprouting conditions (sprouting temperature, soaking time and zinc diacetate solution concentration) were optimized to decrease total plate count, coliforms, and molds and yeasts using a factorial design approach and a desirability function. RESULTS: Based on the responses, the effects of variables were calculated and the interactions between them were determined. Optimal conditions were defined as follows: sprouting temperature 18 °C, soaking time 0.66 h and zinc diacetate concentration 400 mg L-1 . These conditions led to the elimination of coliforms and a decrease in total flora count by 2 log. Interestingly, zinc sprouting increased the zinc content of sprouts and improved their nutritional properties. CONCLUSION: Results showed that the use of zinc solution is a useful tool to improve sprout hygienic and nutritional properties. © 2019 Society of Chemical Industry.


Subject(s)
Food Contamination/prevention & control , Food Handling/methods , Seeds/growth & development , Triticum/growth & development , Zinc/pharmacology , Bacteria/growth & development , Culture Media/chemistry , Culture Media/metabolism , Food Handling/instrumentation , Fungi/growth & development , Hygiene , Nutritive Value , Seeds/chemistry , Seeds/microbiology , Triticum/chemistry , Triticum/microbiology , Zinc/analysis
4.
Lipids Health Dis ; 16(1): 144, 2017 Jul 27.
Article in English | MEDLINE | ID: mdl-28750643

ABSTRACT

BACKGROUND: Lipid accumulation in the liver and pancreas is primarily caused by combined hyperlipidemia. However, the effect of isolated hypercholesterolemia without hypertriglyceridemia is not fully described. Therefore, our aim was to investigate whether hypercholesterolemia alone leads to alterations both in hepatic and pancreatic lipid panel and histology in rats. METHODS: Male Wistar rats were fed with 2% cholesterol +0.25% cholate-supplemented diet or standard chow for 12 weeks. Blood was collected at weeks 0, 4, 8 and 12 to measure serum cholesterol and triglyceride levels. At week 12, both the pancreas and the liver were isolated for further histological and biochemical analysis. Hepatic and plasma fatty acid composition was assessed by gas chromatography. Expression of mRNA of major enzymes involved in saturated/unsaturated fatty acid synthesis was analyzed by qPCR. In separate experiments serum enzyme activities and insulin levels were measured at week 9. RESULTS: At week 12, rats fed with 2% cholesterol +0.25% cholate-supplemented diet were characterized by elevated serum cholesterol (4.09 ± 0.20 vs. 2.89 ± 0.22 mmol/L, *p < 0.05) while triglyceride (2.27 ± 0.05 vs. 2.03 ± 0.03 mmol/L) and glucose levels (5.32 ± 0.14 vs. 5.23 ± 0.10 mmol/L) remained unchanged. Isolated hypercholesterolemia increased hepatic lipid accumulation, hepatic cholesterol (5.86 ± 0.22 vs. 1.60 ± 0.15 ng/g tissue, *p < 0.05) and triglyceride contents (19.28 ± 1.42 vs. 6.78 ± 0.71 ng/g tissue, *p < 0.05), and hepatic nitrotyrosine level (4.07 ± 0.52 vs. 2.59 ± 0.31 ng/mg protein, *p < 0.05). The histology and tissue lipid content of the pancreas was not affected. Serum total protein level, alanine aminotransferase (ALT) and aspartate aminotransferase (AST) activities remained unchanged in response to isolated hypercholesterolemia while serum alkaline phosphatase activity (ALP) significantly increased. Plasma insulin levels did not change in response to isolated hypercholesterolemia suggesting an intact endocrine function of the pancreas. Isolated hypercholesterolemia caused a significantly increased hepatic and serum fatty acid level associated with a marked alteration of fatty acid composition. Hepatic expression of Δ9-desaturase (SCD1) was increased 4.92×, while expression of Δ5-desaturase and Δ6-desaturase were decreased (0.447× and 0.577×, respectively) due to isolated hypercholesterolemia. CONCLUSIONS: Isolated hypercholesterolemia leads to hepatic steatosis and marked alterations in the hepatic lipid profile without affecting the pancreas. Altered fatty acid profile might mediate harmful effects of cholesterol in the liver.


Subject(s)
Fatty Liver/etiology , Hypercholesterolemia/complications , Liver/pathology , Pancreas/pathology , Animals , Blood Glucose/metabolism , Body Weight , Cholesterol/blood , Enzymes/blood , Enzymes/genetics , Fatty Acids/biosynthesis , Fatty Liver/blood , Hypercholesterolemia/blood , Hypercholesterolemia/enzymology , Insulin/blood , Male , Nitrosative Stress , Organ Size , Oxidative Stress , RNA, Messenger/genetics , RNA, Messenger/metabolism , Rats, Wistar , Triglycerides/blood , Tyrosine/analogs & derivatives , Tyrosine/metabolism
5.
J Neurosci ; 35(28): 10154-67, 2015 Jul 15.
Article in English | MEDLINE | ID: mdl-26180192

ABSTRACT

Recent studies established that the planar cell polarity (PCP) pathway is critical for various aspects of nervous system development and function, including axonal guidance. Although it seems clear that PCP signaling regulates actin dynamics, the mechanisms through which this occurs remain elusive. Here, we establish a functional link between the PCP system and one specific actin regulator, the formin DAAM, which has previously been shown to be required for embryonic axonal morphogenesis and filopodia formation in the growth cone. We show that dDAAM also plays a pivotal role during axonal growth and guidance in the adult Drosophila mushroom body, a brain center for learning and memory. By using a combination of genetic and biochemical assays, we demonstrate that Wnt5 and the PCP signaling proteins Frizzled, Strabismus, and Dishevelled act in concert with the small GTPase Rac1 to activate the actin assembly functions of dDAAM essential for correct targeting of mushroom body axons. Collectively, these data suggest that dDAAM is used as a major molecular effector of the PCP guidance pathway. By uncovering a signaling system from the Wnt5 guidance cue to an actin assembly factor, we propose that the Wnt5/PCP navigation system is linked by dDAAM to the regulation of the growth cone actin cytoskeleton, and thereby growth cone behavior, in a direct way.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Axons/physiology , Cell Polarity/genetics , Drosophila Proteins/metabolism , Gene Expression Regulation, Developmental/genetics , Mushroom Bodies , Signal Transduction/genetics , Actins/metabolism , Adaptor Proteins, Signal Transducing/genetics , Animals , Animals, Genetically Modified , Dishevelled Proteins , Drosophila , Drosophila Proteins/genetics , Embryo, Nonmammalian , Growth Cones/physiology , Immunoprecipitation , Mushroom Bodies/cytology , Mushroom Bodies/embryology , Mushroom Bodies/growth & development , Mutation/genetics , Phosphoproteins/genetics , Phosphoproteins/metabolism , Proto-Oncogene Proteins/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Transfection , Wnt Proteins/metabolism , rac GTP-Binding Proteins/genetics , rac GTP-Binding Proteins/metabolism
6.
Biochim Biophys Acta ; 1851(9): 1271-82, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26092623

ABSTRACT

Previous studies have demonstrated that gamma-linolenic acid (GLA) is effective against glioma cells under both in vitro and in vivo conditions. In the present study we determined how GLA alone or in combination with irradiation alters the fatty acid (FA) and lipid profiles, the lipid droplet (LD) content, the lipid biosynthetic gene expression and the apoptosis of glioma cells. In GLA-treated cells direct correlations were found between the levels of various FAs and the expression of the corresponding FA biosynthetic genes. The total levels of saturated and monosaturated FAs decreased in concert with the down-regulation of FASN and SCD1 gene expression. Similarly, decreased FADS1 gene expression was paralleled by lowered arachidonic acid (20:4 n-6) and eicosapentaenoic acid (20:5 n-3) contents, while the down-regulation of FADS2 expression was accompanied by a diminished docosahexaenoic acid (22:6 n-3) content. Detailed mass spectrometric analyses revealed that individual treatments gave rise to distinct lipidomic fingerprints. Following uptake, GLA was subjected to elongation, resulting in dihomo-gamma-linolenic acid (20:3 n-6, DGLA), which was used for the synthesis of the LD constituent triacylglycerols and cholesteryl esters. Accordingly, an increased number of LDs were observed in response to GLA administration after irradiation. GLA increased the radioresponsiveness of U87 MG cells, as demonstrated by an increase in the number of apoptotic cells determined by FACS analysis. In conclusion, treatment with GLA increased the apoptosis of irradiated glioma cells, and GLA might therefore increase the therapeutic efficacy of irradiation in the treatment of gliomas.


Subject(s)
Gene Expression Regulation, Neoplastic , Lipid Droplets/drug effects , Lipid Metabolism/drug effects , Neuroglia/drug effects , Radiation-Sensitizing Agents/pharmacology , gamma-Linolenic Acid/pharmacology , 8,11,14-Eicosatrienoic Acid/metabolism , Apoptosis/drug effects , Apoptosis/radiation effects , Arachidonic Acid/metabolism , Cell Line, Tumor , Cholesterol Esters/metabolism , Delta-5 Fatty Acid Desaturase , Docosahexaenoic Acids/metabolism , Eicosapentaenoic Acid/metabolism , Fatty Acid Desaturases/genetics , Fatty Acid Desaturases/metabolism , Fatty Acid Synthase, Type I/genetics , Fatty Acid Synthase, Type I/metabolism , Gamma Rays , Humans , Lipid Droplets/chemistry , Lipid Droplets/metabolism , Lipid Droplets/radiation effects , Lipid Metabolism/radiation effects , Neuroglia/metabolism , Neuroglia/pathology , Neuroglia/radiation effects , Radiation-Sensitizing Agents/metabolism , Stearoyl-CoA Desaturase/genetics , Stearoyl-CoA Desaturase/metabolism , Triglycerides/metabolism , gamma-Linolenic Acid/metabolism
7.
Lipids Health Dis ; 13: 142, 2014 Sep 02.
Article in English | MEDLINE | ID: mdl-25182732

ABSTRACT

BACKGROUND: Based on previous observations a potential resort in the therapy of the particularly radioresistant glioma would be its treatment with unsaturated fatty acids (UFAs) combined with irradiation. METHODS: We evaluated the effect of different UFAs (arachidonic acid (AA), docosahexaenoic acid (DHA), gamma-linolenic acid (GLA), eicosapentaenoic acid (EPA) and oleic acid (OA)) on human U87 MG glioma cell line by classical biochemical end-point assays, impedance-based, real-time cellular and holographic microscopic analysis. We further analyzed AA, DHA, and GLA at morphological, gene and miRNA expression level. RESULTS: Corresponding to LDH-, MTS assays and real-time cytoxicity profiles AA, DHA, and GLA enhanced the radio sensitivity of glioma cells. The collective application of polyunsaturated fatty acids (PUFAs) and irradiation significantly changed the expression of EGR1, TNF-α, NOTCH1, c-MYC, TP53, HMOX1, AKR1C1, NQO1, while up-regulation of GADD45A, EGR1, GRP78, DDIT3, c-MYC, FOSL1 were recorded both in response to PUFA treatment or irradiation alone. Among the analyzed miRNAs miR-146 and miR-181a were induced by DHA treatment. Overexpression of miR-146 was also detected by combined treatment of GLA and irradiation. CONCLUSIONS: Because PUFAs increased the radio responsiveness of glioma cells as assessed by biochemical and cellular assays, they might increase the therapeutic efficacy of radiation in treatment of gliomas. We demonstrated that treatment with DHA, AA and GLA as adjunct to irradiation up-regulated the expression of oxidative-stress and endoplasmic reticulum stress related genes, and affected NOTCH1 expression, which could explain their additive effects.


Subject(s)
Antineoplastic Agents/pharmacology , Fatty Acids, Unsaturated/pharmacology , Cell Line, Tumor , Cell Proliferation , Cell Shape/drug effects , Cell Shape/radiation effects , Drug Screening Assays, Antitumor , Endoplasmic Reticulum Chaperone BiP , Gene Expression Regulation, Neoplastic/drug effects , Gene Expression Regulation, Neoplastic/radiation effects , Glioma , Humans , L-Lactate Dehydrogenase/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Transcriptome/drug effects , Transcriptome/radiation effects
8.
Toxicon ; 57(6): 831-40, 2011 May.
Article in English | MEDLINE | ID: mdl-21333666

ABSTRACT

Cylindrospermopsis raciborskii is becoming a major concern among cyanobacteria, due to its potential ability to produce toxic metabolites. We assessed the cytotoxic potential of four C. raciborskii strains (ACT 9502, ACT 9503, ACT 9504 and ACT 9505) isolated from Lake Balaton (Hungary), by lactate dehydrogenase (LDH) leakage measurements and by detecting morphological alterations in CHO-K1 (Chinese Hamster Ovary) cells. The Australian AQS (cylindrospermopsin producer) strain of C. raciborskii and purified cylindrospermopsin (CYN) were used as positive references in both the biochemical and morphological studies. Chemical analysis for known cyanotoxins was performed on aqueous extracts of ACT and AQS strains by the HPLC-MS technique. Comparing threshold values of LDH leakage data, different toxic potentials of cyanobacterial extracts are suggested in short term (3 h) and long (24 h) exposure regimes. In the acute (3 h) experiments the aqueous extract of the ACT 9505 strain proved to be most toxic (EC(50) = 7.4 mg mL(-1)), while after 24 h the ACT 9504 extract was the most effective (EC(50) = 0.65 mg mL(-1)). The extract of the AQS strain and the purified CYN exerted most of their toxic effects after 3 h exposure (EC(50) = 0.74 mg mL(-1), and 0.9 µg mL(-1) respectively). The morphological changes of CHO-K1 cells induced by the crude extracts of the ACT strains included fragmentation of the actin filaments then relocation of the depolymerized actin to the perinuclear region, resulting cell rounding and loss of adhesion. Exposure of CHO-K1 cells to the crude extract of the AQS strain, moreover, resulted cell shrinking and formation of filopodia, i.e. distinctly different cytological alterations from that induced by the ACT extracts and the purified CYN. Chemical analysis of the cyanobacterial crude extracts confirmed the presence of cylindrospermopsin in the extract of the AQS strain (8.5 mg CYN g(-1) dry weight), and none of the presently known cyanotoxins have been analytically confirmed in the extracts of the ACT strains isolated from the Lake Balaton. Although a significant toxicity of all four ACT C. raciborskii strains is confirmed by both biochemical and morphological studies, our results also pointed out the necessity of further studies to identify the toxic, but still unknown metabolic components produced by these cyanobacterial members of the phytoplankton communities.


Subject(s)
Bacterial Toxins/toxicity , Cylindrospermopsis/chemistry , Uracil/analogs & derivatives , Alkaloids , Animals , Bacterial Toxins/isolation & purification , CHO Cells , Chromatography, High Pressure Liquid , Cricetinae , Cricetulus , Cyanobacteria Toxins , Dose-Response Relationship, Drug , Fresh Water , Hungary , L-Lactate Dehydrogenase , Mass Spectrometry , Species Specificity , Toxicity Tests , Uracil/isolation & purification , Uracil/toxicity
9.
Toxicol In Vitro ; 23(4): 710-8, 2009 Jun.
Article in English | MEDLINE | ID: mdl-19250963

ABSTRACT

In this study we compared the effects of the two frequently occuring and most dangerous cyanobacterial toxins on the cellular organization of microfilaments, microtubules and on the chromatin structure in Chinese hamster ovary (CHO-K1) cells. These compounds are the widely known microcystin-LR (MC-LR) and cylindrospermopsin (CYN) classified as the highest-priority cyanotoxin. Toxic effects were tested in a concentration and time dependent manner. The hepatotoxic MC-LR did not cause significant cytotoxicity on CHO-K1 cells under 20 microM, but caused apoptotic changes at higher concentrations. Apoptotic shrinkage was associated with the shortening and loss of actin filaments and with a concentration dependent depolymerization of microtubules. No necrosis was observed over the concentration range (1-50 microM MC-LR) tested. Cylindrospermopsin did cause apoptosis at low concentrations (1-2 microM) and over short exposure periods (12h). Necrosis was observed at higher concentrations (5-10 microM) and following longer exposure periods (24 or 48h). Cyanotoxins also affected the chromatin structure. The condensation process was inhibited by MC-LR at a later stage and manifested as broken elongated prechromosomes. CYN inhibited chromatin condensation at the early fibrillary stage leading to blurred fluorescent images of apoptotic bodies and preventing the formation of metaphase chromosomes. Cylindrospermopsin exhibited a more pronounced toxic effect causing cytoskeletal and nuclear changes as well as apoptotic and necrotic alterations.


Subject(s)
Chromatin/drug effects , Cytoskeleton/drug effects , Microcystins/toxicity , Uracil/analogs & derivatives , Alkaloids , Animals , Apoptosis/drug effects , Bacterial Toxins , Cell Survival/drug effects , Cricetinae , Cyanobacteria Toxins , Cytoskeleton/chemistry , Marine Toxins , Uracil/toxicity
SELECTION OF CITATIONS
SEARCH DETAIL
...