Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 104
Filter
1.
Cell Rep ; 43(3): 113959, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38483903

ABSTRACT

The extrinsic diet and the intrinsic developmental programs are intertwined. Although extensive research has been conducted on how nutrition regulates development, whether and how developmental programs control the timing of nutritional responses remain barely known. Here, we report that a developmental timing regulator, BLMP-1/BLIMP1, governs the temporal response to dietary restriction (DR). At the end of larval development, BLMP-1 is induced and interacts with DR-activated PHA-4/FOXA, a key transcription factor responding to the reduced nutrition. By integrating temporal and nutritional signaling, the DR response regulates many development-related genes, including gska-3/GSK3ß, through BLMP-1-PHA-4 at the onset of adulthood. Upon DR, a precocious activation of BLMP-1 in early larval stages impairs neuronal development through gska-3, whereas the increase of gska-3 by BLMP-1-PHA-4 at the last larval stage suppresses WNT signaling in adulthood for DR-induced longevity. Our findings reveal a temporal checkpoint of the DR response that protects larval development and promotes adult health.


Subject(s)
Caenorhabditis elegans Proteins , Caenorhabditis elegans , Animals , Caenorhabditis elegans/genetics , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans Proteins/metabolism , Caloric Restriction , Gene Expression Regulation , Longevity/genetics , Transcription Factors/metabolism , Wnt Signaling Pathway
2.
Nat Commun ; 15(1): 955, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38302463

ABSTRACT

Ageing exhibits common and distinct features in various tissues, making it critical to decipher the tissue-specific ageing mechanisms. MiRNAs are essential regulators in ageing and are recently highlighted as a class of intercellular messengers. However, little is known about the tissue-specific transcriptomic changes of miRNAs during ageing. C. elegans is a well-established model organism in ageing research. Here, we profile the age-dependent miRNAomic changes in five isolated worm tissues. Besides the diverse ageing-regulated miRNA expression across tissues, we discover numerous miRNAs in the tissues without their transcription. We further profile miRNAs in the extracellular vesicles and find that worm miRNAs undergo inter-tissue trafficking via these vesicles in an age-dependent manner. Using these datasets, we uncover the interaction between body wall muscle-derived mir-1 and DAF-16/FOXO in the intestine, suggesting mir-1 as a messenger in inter-tissue signalling. Taken together, we systematically investigate worm miRNAs in the somatic tissues and extracellular vesicles during ageing, providing a valuable resource to study tissue-autonomous and nonautonomous functions of miRNAs in ageing.


Subject(s)
Caenorhabditis elegans Proteins , MicroRNAs , Animals , Caenorhabditis elegans/genetics , Caenorhabditis elegans/metabolism , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans Proteins/metabolism , Aging/genetics , Intestines , MicroRNAs/metabolism , Longevity/genetics
3.
Int J Mol Sci ; 25(4)2024 Feb 08.
Article in English | MEDLINE | ID: mdl-38396730

ABSTRACT

Heterozygous variants in the Poly(U) Binding Splicing Factor 60kDa gene (PUF60) have been associated with Verheij syndrome, which has the key features of coloboma, short stature, skeletal abnormalities, developmental delay, palatal abnormalities, and congenital heart and kidney defects. Here, we report five novel patients from unrelated families with PUF60-related disorders exhibiting novel genetic and clinical findings with three truncating variants, one splice-site variant with likely reduced protein expression, and one missense variant. Protein modeling of the patient's missense variant in the PUF60 AlphaFold structure revealed a loss of polar bonds to the surrounding residues. Neurodevelopmental disorders were present in all patients, with variability in speech, motor, cognitive, social-emotional and behavioral features. Novel phenotypic expansions included movement disorders as well as immunological findings with recurrent respiratory, urinary and ear infections, atopic diseases, and skin abnormalities. We discuss the role of PUF60 in immunity with and without infection based on recent organismic and cellular studies. As our five patients showed less-severe phenotypes than classical Verheij syndrome, particularly with the absence of key features such as coloboma or palatal abnormalities, we propose a reclassification as PUF60-related neurodevelopmental disorders with multi-system involvement. These findings will aid in the genetic counseling of patients and families.


Subject(s)
Coloboma , Neurodevelopmental Disorders , Humans , Mutation, Missense , Neurodevelopmental Disorders/genetics , Phenotype , RNA Splicing Factors/genetics
4.
EMBO Rep ; 25(2): 704-724, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38263327

ABSTRACT

TFEB is a master regulator of autophagy, lysosome biogenesis, mitochondrial metabolism, and immunity that works primarily through transcription controlled by cytosol-to-nuclear translocation. Emerging data indicate additional regulatory interactions at the surface of organelles such as lysosomes. Here we show that TFEB has a non-transcriptional role in mitochondria, regulating the electron transport chain complex I to down-modulate inflammation. Proteomics analysis reveals extensive TFEB co-immunoprecipitation with several mitochondrial proteins, whose interactions are disrupted upon infection with S. Typhimurium. High resolution confocal microscopy and biochemistry confirms TFEB localization in the mitochondrial matrix. TFEB translocation depends on a conserved N-terminal TOMM20-binding motif and is enhanced by mTOR inhibition. Within the mitochondria, TFEB and protease LONP1 antagonistically co-regulate complex I, reactive oxygen species and the inflammatory response. Consequently, during infection, lack of TFEB specifically in the mitochondria exacerbates the expression of pro-inflammatory cytokines, contributing to innate immune pathogenesis.


Subject(s)
Autophagy , Inflammation , Humans , Inflammation/metabolism , Cytosol/metabolism , Active Transport, Cell Nucleus , Lysosomes/metabolism , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/genetics , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/metabolism , Mitochondrial Proteins/metabolism , ATP-Dependent Proteases/metabolism
5.
Nat Aging ; 3(12): 1544-1560, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37957359

ABSTRACT

Late-life-initiated dietary interventions show limited efficacy in extending longevity or mitigating frailty, yet the underlying causes remain unclear. Here we studied the age-related fasting response of the short-lived killifish Nothobranchius furzeri. Transcriptomic analysis uncovered the existence of a fasting-like transcriptional program in the adipose tissue of old fish that overrides the feeding response, setting the tissue in persistent metabolic quiescence. The fasting-refeeding cycle triggers an inverse oscillatory expression of genes encoding the AMP-activated protein kinase (AMPK) regulatory subunits Prkag1 (γ1) and Prkag2 (γ2) in young individuals. Aging blunts such regulation, resulting in reduced Prkag1 expression. Transgenic fish with sustained AMPKγ1 countered the fasting-like transcriptional program, exhibiting a more youthful feeding and fasting response in older age, improved metabolic health and longevity. Accordingly, Prkag1 expression declines with age in human tissues and is associated with multimorbidity and multidimensional frailty risk. Thus, selective activation of AMPKγ1 prevents metabolic quiescence and preserves healthy aging in vertebrates, offering potential avenues for intervention.


Subject(s)
Frailty , Longevity , Animals , Humans , Longevity/genetics , AMP-Activated Protein Kinases/genetics , Aging/genetics , Fishes/metabolism
6.
Proc Natl Acad Sci U S A ; 120(39): e2221553120, 2023 09 26.
Article in English | MEDLINE | ID: mdl-37722055

ABSTRACT

Accumulating evidence has demonstrated the presence of intertissue-communication regulating systemic aging, but the underlying molecular network has not been fully explored. We and others previously showed that two basic helix-loop-helix transcription factors, MML-1 and HLH-30, are required for lifespan extension in several longevity paradigms, including germlineless Caenorhabditis elegans. However, it is unknown what tissues these factors target to promote longevity. Here, using tissue-specific knockdown experiments, we found that MML-1 and its heterodimer partners MXL-2 and HLH-30 act primarily in neurons to extend longevity in germlineless animals. Interestingly, however, the downstream cascades of MML-1 in neurons were distinct from those of HLH-30. Neuronal RNA interference (RNAi)-based transcriptome analysis revealed that the glutamate transporter GLT-5 is a downstream target of MML-1 but not HLH-30. Furthermore, the MML-1-GTL-5 axis in neurons is critical to prevent an age-dependent collapse of proteostasis and increased oxidative stress through autophagy and peroxidase MLT-7, respectively, in long-lived animals. Collectively, our study revealed that systemic aging is regulated by a molecular network involving neuronal MML-1 function in both neural and peripheral tissues.


Subject(s)
Aging , Neurons , Animals , Aging/genetics , Amino Acid Transport System X-AG , Autophagy/genetics , Caenorhabditis elegans/genetics , Peroxidases , Caenorhabditis elegans Proteins/genetics
7.
Nat Commun ; 14(1): 3716, 2023 06 22.
Article in English | MEDLINE | ID: mdl-37349299

ABSTRACT

Accumulating evidence indicates that mitochondria play crucial roles in immunity. However, the role of the mitochondrial Krebs cycle in immunity remains largely unknown, in particular at the organism level. Here we show that mitochondrial aconitase, ACO-2, a Krebs cycle enzyme that catalyzes the conversion of citrate to isocitrate, inhibits immunity against pathogenic bacteria in C. elegans. We find that the genetic inhibition of aco-2 decreases the level of oxaloacetate. This increases the mitochondrial unfolded protein response, subsequently upregulating the transcription factor ATFS-1, which contributes to enhanced immunity against pathogenic bacteria. We show that the genetic inhibition of mammalian ACO2 increases immunity against pathogenic bacteria by modulating the mitochondrial unfolded protein response and oxaloacetate levels in cultured cells. Because mitochondrial aconitase is highly conserved across phyla, a therapeutic strategy targeting ACO2 may eventually help properly control immunity in humans.


Subject(s)
Aconitate Hydratase , Caenorhabditis elegans , Humans , Animals , Aconitate Hydratase/genetics , Caenorhabditis elegans/genetics , Caenorhabditis elegans/metabolism , Oxaloacetic Acid , Oxaloacetates , Unfolded Protein Response , Mammals/metabolism
8.
Cold Spring Harb Protoc ; 2023(11): pdb.prot107886, 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37100471

ABSTRACT

The ability to perform in vitro fertilization, together with sperm cryopreservation, greatly facilitates the long-term laboratory maintenance of wild-type and transgenic model organisms and helps prevent genetic drift. It is also useful in cases where reproduction may be compromised. In this protocol, we present a method for in vitro fertilization of the African Turquoise killifish Nothobranchius furzeri that is compatible with the use of fresh or cryopreserved sperm.


Subject(s)
Fundulidae , Animals , Male , Semen , Laboratories , Fertilization in Vitro , Aging
9.
Nature ; 616(7958): 814-821, 2023 04.
Article in English | MEDLINE | ID: mdl-37046086

ABSTRACT

Physiological homeostasis becomes compromised during ageing, as a result of impairment of cellular processes, including transcription and RNA splicing1-4. However, the molecular mechanisms leading to the loss of transcriptional fidelity are so far elusive, as are ways of preventing it. Here we profiled and analysed genome-wide, ageing-related changes in transcriptional processes across different organisms: nematodes, fruitflies, mice, rats and humans. The average transcriptional elongation speed (RNA polymerase II speed) increased with age in all five species. Along with these changes in elongation speed, we observed changes in splicing, including a reduction of unspliced transcripts and the formation of more circular RNAs. Two lifespan-extending interventions, dietary restriction and lowered insulin-IGF signalling, both reversed most of these ageing-related changes. Genetic variants in RNA polymerase II that reduced its speed in worms5 and flies6 increased their lifespan. Similarly, reducing the speed of RNA polymerase II by overexpressing histone components, to counter age-associated changes in nucleosome positioning, also extended lifespan in flies and the division potential of human cells. Our findings uncover fundamental molecular mechanisms underlying animal ageing and lifespan-extending interventions, and point to possible preventive measures.


Subject(s)
Aging , Longevity , Transcription Elongation, Genetic , Animals , Humans , Mice , Rats , Aging/genetics , Insulin/metabolism , Longevity/genetics , RNA Polymerase II/genetics , RNA Polymerase II/metabolism , Signal Transduction , Drosophila melanogaster/genetics , Caenorhabditis elegans/genetics , RNA, Circular , Somatomedins , Nucleosomes , Histones , Cell Division , Caloric Restriction
10.
Nat Commun ; 14(1): 1226, 2023 03 03.
Article in English | MEDLINE | ID: mdl-36869049

ABSTRACT

Netrin-1 is a bifunctional chemotropic guidance cue that plays key roles in diverse cellular processes including axon pathfinding, cell migration, adhesion, differentiation, and survival. Here, we present a molecular understanding of netrin-1 mediated interactions with glycosaminoglycan chains of diverse heparan sulfate proteoglycans (HSPGs) and short heparin oligosaccharides. Whereas interactions with HSPGs act as platform to co-localise netrin-1 close to the cell surface, heparin oligosaccharides have a significant impact on the highly dynamic behaviour of netrin-1. Remarkably, the monomer-dimer equilibrium of netrin-1 in solution is abolished in the presence of heparin oligosaccharides and replaced with highly hierarchical and distinct super assemblies leading to unique, yet unknown netrin-1 filament formation. In our integrated approach we provide a molecular mechanism for the filament assembly which opens fresh paths towards a molecular understanding of netrin-1 functions.


Subject(s)
Glycosaminoglycans , Heparin , Netrin-1 , Axon Guidance , Cell Differentiation , Heparan Sulfate Proteoglycans
11.
Cold Spring Harb Protoc ; 2023(11): pdb.prot107885, 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-36921999

ABSTRACT

Sperm cryopreservation is an essential method for the genetic preservation and long-term storage of wild-type and transgenic animal stocks. In addition, it allows for the synchronization of gamete availability and the transport and sharing of lines between different laboratories. Here, we describe a protocol developed in our laboratory for the extraction and cryopreservation of killifish (Nothobranchius furzeri) sperm.


Subject(s)
Fundulidae , Male , Animals , Semen , Animals, Genetically Modified , Cryopreservation , Aging
12.
Rheumatology (Oxford) ; 62(10): 3459-3468, 2023 10 03.
Article in English | MEDLINE | ID: mdl-36752501

ABSTRACT

OBJECTIVE: We describe a family with a novel mutation in the TNF Receptor Superfamily Member 1A (TNFRSF1A) gene causing TNF receptor-associated periodic syndrome (TRAPS) with renal AA amyloidosis. METHODS: Case series of affected family members. We further investigated the plasma metabolome of these patients in comparison with healthy controls using mass spectrometry. RESULTS: In all symptomatic family members, we detected the previously undescribed variant c.332A>G (p.Q111R) in the TNFRSF1A gene. Canakinumab proved an effective treatment option leading to remission in all treated patients. One patient with suspected renal amyloidosis showed near normalization of proteinuria under treatment. Analysis of the metabolome revealed 31 metabolic compounds to be upregulated and 35 compounds to be downregulated compared with healthy controls. The most dysregulated metabolites belonged to pathways identified as arginine biosynthesis, phenylalanine, tyrosine and tryptophan biosynthesis, and cysteine and methionine metabolism. Interestingly, the metabolic changes observed in all three TRAPS patients seemed independent of treatment with canakinumab and subsequent remission. CONCLUSION: We present a novel mutation in the TNFRSF1A gene associated with amyloidosis. Canakinumab is an effective treatment for individuals with this new likely pathogenic variant. Alterations in the metabolome were most prominent in the pathways related to arginine biosynthesis, tryptophan metabolism, and metabolism of cysteine and methionine, and seemed to be unaffected by treatment with canakinumab. Further investigation is needed to determine the role of these metabolomic changes in the pathophysiology of TRAPS.


Subject(s)
Amyloidosis , Familial Mediterranean Fever , Humans , Receptors, Tumor Necrosis Factor , Familial Mediterranean Fever/drug therapy , Familial Mediterranean Fever/genetics , Familial Mediterranean Fever/complications , Cysteine/genetics , Tryptophan , Receptors, Tumor Necrosis Factor, Type I/genetics , Amyloidosis/complications , Mutation , Methionine , Arginine
13.
Cold Spring Harb Protoc ; 2023(8): 107745, 2023 08 01.
Article in English | MEDLINE | ID: mdl-36828575

ABSTRACT

Blood withdrawal is a common procedure performed on laboratory animals to monitor key processes and indicators of fish health and physiology, such as hematopoiesis, hemostasis, and lipid and glucose metabolism. Moreover, the ability to extract blood with minimal invasiveness and without sacrificing animals enables repeated sampling, allowing both longitudinal studies of individual animals, as well as reducing the number of experimental animals needed in a study. The African turquoise killifish is an emerging animal model that is progressively being adopted worldwide for aging studies because of its naturally short life span. However, because of the small body size of this species, nonlethal blood collection is a challenging procedure. Here we present a detailed protocol enabling repeated blood sampling from the same individual fish. This method, if correctly executed, is minimally invasive and does not cause any lasting damage. The protocol has been tested on animals spanning from 6 to 24 wk of age and the amount of blood that could be extracted varied from 0.5 to 8 µL, greatly depending on specimen age, sex, and size. This volume is sufficient to perform analyses such as blood glucose measurement, blood cell counts, or histological stains on blood smears.


Subject(s)
Cyprinodontiformes , Fundulidae , Animals , Fundulidae/physiology , Cyprinodontiformes/physiology , Aging , Longevity
14.
Cold Spring Harb Protoc ; 2023(8): 107884, 2023 08 01.
Article in English | MEDLINE | ID: mdl-36828576

ABSTRACT

Aging is associated with an increase in body fat mass and a concomitant decrease in lean mass and bone density in mammals. Body adiposity can also be redistributed with age, resulting in abdominal fat accumulation and subcutaneous fat reduction. In addition, specific variation in fat distribution is considered to be a risk factor for a number of age-related metabolic disorders. Micro computed tomography (micro-CT) is a nondestructive high-resolution imaging method that uses planar X-ray images captured at various angles around a sample of interest to yield a three-dimensional array of radiodensity values, which can then be used to computationally extract the adipose volume in situ using its innate contrast properties. This method was successfully used to study adipose tissue dynamics in rodents and more recently in zebrafish. The naturally short-lived African turquoise killifish is an emerging model organism to study the biology of aging. Like mammals, killifish also have different fat deposits (visceral and subcutaneous), making them a suitable model to study age-related changes in fat mass and distribution. However, procedures allowing precise quantification of fat content and distribution are missing in this species. Here, we provide an optimized protocol to measure and quantify fat distribution in turquoise killifish by micro-CT scan analysis and show the applicability of the method in young and old animals of both sexes.


Subject(s)
Fundulidae , Male , Animals , Female , X-Ray Microtomography/methods , Zebrafish , Adipose Tissue/diagnostic imaging , Mammals
15.
bioRxiv ; 2023 Dec 21.
Article in English | MEDLINE | ID: mdl-38187690

ABSTRACT

Maintaining protein homeostasis is essential for cellular health. During times of proteotoxic stress, cells deploy unique defense mechanisms to achieve resolution. Our previous research uncovered a cross-compartmental Mitochondrial to Cytosolic Stress Response (MCSR), a unique stress response activated by the perturbation of mitochondrial proteostasis, which ultimately results in the improvement of proteostasis in the cytosol. Here, we found that this signaling axis also influences the unfolded protein response of the endoplasmic reticulum (UPR ER ), suggesting the presence of a Mitochondria to ER Stress Response (MERSR). During MERSR, the IRE1 branch of UPR ER is inhibited, introducing a previously unknown regulatory component of MCSR. Moreover, proteostasis is enhanced through the upregulation of the PERK-eIF2a signaling pathway, increasing phosphorylation of eIF2a and improving the ER's capacity to manage greater proteostasis load. MERSR activation in both poly-glutamine (poly-Q) and amyloid-beta (Aß) C. elegans disease models also led to improvement in both aggregate burden and overall disease outcome. These findings shed light on the coordination between the mitochondria and the ER in maintaining cellular proteostasis and provides further evidence for the importance of intercompartmental signaling.

16.
Aging Cell ; 21(12): e13725, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36168305

ABSTRACT

Branched-chain amino acid (BCAA) metabolism is a central hub for energy production and regulation of numerous physiological processes. Controversially, both increased and decreased levels of BCAAs are associated with longevity. Using genetics and multi-omics analyses in Caenorhabditis elegans, we identified adaptive regulation of the ubiquitin-proteasome system (UPS) in response to defective BCAA catabolic reactions after the initial transamination step. Worms with impaired BCAA metabolism show a slower turnover of a GFP-based proteasome substrate, which is suppressed by loss-of-function of the first BCAA catabolic enzyme, the branched-chain aminotransferase BCAT-1. The exogenous supply of BCAA-derived carboxylic acids, which are known to accumulate in the body fluid of patients with BCAA metabolic disorders, is sufficient to regulate the UPS. The link between BCAA intermediates and UPS function presented here sheds light on the unexplained role of BCAAs in the aging process and opens future possibilities for therapeutic interventions.


Subject(s)
Amino Acids, Branched-Chain , Proteasome Endopeptidase Complex , Animals , Amino Acids, Branched-Chain/metabolism , Caenorhabditis elegans/metabolism
17.
EMBO J ; 41(8): e109633, 2022 04 19.
Article in English | MEDLINE | ID: mdl-35253240

ABSTRACT

Ageing is a complex process with common and distinct features across tissues. Unveiling the underlying processes driving ageing in individual tissues is indispensable to decipher the mechanisms of organismal longevity. Caenorhabditis elegans is a well-established model organism that has spearheaded ageing research with the discovery of numerous genetic pathways controlling its lifespan. However, it remains challenging to dissect the ageing of worm tissues due to the limited description of tissue pathology and access to tissue-specific molecular changes during ageing. In this study, we isolated cells from five major tissues in young and old worms and profiled the age-induced transcriptomic changes within these tissues. We observed a striking diversity of ageing across tissues and identified different sets of longevity regulators therein. In addition, we found novel tissue-specific factors, including irx-1 and myrf-2, which control the integrity of the intestinal barrier and sarcomere structure during ageing respectively. This study demonstrates the complexity of ageing across worm tissues and highlights the power of tissue-specific transcriptomic profiling during ageing, which can serve as a resource to the field.


Subject(s)
Caenorhabditis elegans Proteins , Caenorhabditis elegans , Aging/genetics , Aging/metabolism , Animals , Caenorhabditis elegans/genetics , Caenorhabditis elegans/metabolism , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans Proteins/metabolism , Longevity/genetics , Transcriptome
18.
Transl Res ; 244: 32-46, 2022 06.
Article in English | MEDLINE | ID: mdl-35189406

ABSTRACT

Caloric Restriction (CR) extends lifespan and augments cellular stress-resistance from yeast to primates, making CR an attractive strategy for organ protection in the clinic. Translation of CR to patients is complex, due to problems regarding adherence, feasibility, and safety concerns in frail patients. Novel tailored dietary regimens, which modulate the dietary composition of macro- and micronutrients rather than reducing calorie intake promise similar protective effects and increased translatability. However, a direct head-to-head comparison to identify the most potent approach for organ protection, as well as overlapping metabolic consequences have not been performed. We systematically analyzed six dietary preconditioning protocols - fasting mimicking diet (FMD), ketogenic diet (KD), dietary restriction of branched chained amino acids (BCAA), two dietary regimens restricting sulfur-containing amino acids (SR80/100) and CR - in a rodent model of renal ischemia-reperfusion injury (IRI) to quantify diet-induced resilience in kidneys. Of the administered diets, FMD, SR80/100 and CR efficiently protect from kidney damage after IRI. Interestingly, these approaches show overlapping changes in oxidative and hydrogen sulfide (H2S)-dependent cysteine catabolism as a potential common mechanism of organ protection.


Subject(s)
Cysteine , Reperfusion Injury , Animals , Caloric Restriction , Diet , Humans , Longevity
19.
Nat Aging ; 2(9): 796-808, 2022 09.
Article in English | MEDLINE | ID: mdl-37118503

ABSTRACT

Changes in splicing fidelity are associated with loss of homeostasis and aging, yet only a handful of splicing factors have been shown to be causally required to promote longevity, and the underlying mechanisms and downstream targets in these paradigms remain elusive. Surprisingly, we found a hypomorphic mutation within ribonucleoprotein RNP-6/poly(U)-binding factor 60 kDa (PUF60), a spliceosome component promoting weak 3'-splice site recognition, which causes aberrant splicing, elevates stress responses and enhances longevity in Caenorhabditis elegans. Through genetic suppressor screens, we identify a gain-of-function mutation within rbm-39, an RNP-6-interacting splicing factor, which increases nuclear speckle formation, alleviates splicing defects and curtails longevity caused by rnp-6 mutation. By leveraging the splicing changes induced by RNP-6/RBM-39 activities, we uncover intron retention in egl-8/phospholipase C ß4 (PLCB4) as a key splicing target prolonging life. Genetic and biochemical evidence show that neuronal RNP-6/EGL-8 downregulates mammalian target of rapamycin complex 1 (mTORC1) signaling to control organismal lifespan. In mammalian cells, PUF60 downregulation also potently and specifically inhibits mTORC1 signaling. Altogether, our results reveal that splicing fidelity modulates lifespan through mTOR signaling.


Subject(s)
Caenorhabditis elegans Proteins , Spliceosomes , Animals , Spliceosomes/genetics , Longevity/genetics , Introns/genetics , Caenorhabditis elegans Proteins/genetics , RNA Splicing Factors/genetics , Caenorhabditis elegans/genetics , Ribonucleoproteins/genetics , Mechanistic Target of Rapamycin Complex 1/genetics , Mammals/genetics
20.
Front Oncol ; 11: 761045, 2021.
Article in English | MEDLINE | ID: mdl-34804962

ABSTRACT

Sarah Nanoparticles (SaNPs) are unique multicore iron oxide-based nanoparticles, developed for the treatment of advanced cancer, following standard care, through the selective delivery of thermal energy to malignant cells upon exposure to an alternating magnetic field. For their therapeutic effect, SaNPs need to accumulate in the tumor. Since the potential accumulation and associated toxicity in normal tissues are an important risk consideration, biodistribution and toxicity were assessed in naïve BALB/c mice. Therapeutic efficacy and the effect on survival were investigated in the 4T1 murine model of metastatic breast cancer. Toxicity evaluation at various timepoints did not reveal any abnormal clinical signs, evidence of alterations in organ function, nor histopathologic adverse target organ toxicity, even after a follow up period of 25 weeks, confirming the safety of SaNP use. The biodistribution evaluation, following SaNP administration, indicated that SaNPs accumulate mainly in the liver and spleen. A comprehensive pharmacokinetics evaluation, demonstrated that the total percentage of SaNPs that accumulated in the blood and vital organs was ~78%, 46%, and 36% after 4, 13, and 25 weeks, respectively, suggesting a time-dependent clearance from the body. Efficacy studies in mice bearing 4T1 metastatic tumors revealed a 49.6% and 70% reduction in the number of lung metastases and their relative size, respectively, in treated vs. control mice, accompanied by a decrease in tumor cell viability in response to treatment. Moreover, SaNP treatment followed by alternating magnetic field exposure significantly improved the survival rate of treated mice compared to the controls. The median survival time was 29 ± 3.8 days in the treated group vs. 21.6 ± 4.9 days in the control, p-value 0.029. These assessments open new avenues for generating SaNPs and alternating magnetic field application as a potential novel therapeutic modality for metastatic cancer patients.

SELECTION OF CITATIONS
SEARCH DETAIL
...