Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Sci Technol ; 58(20): 8792-8802, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38719742

ABSTRACT

Per- and polyfluoroalkyl substances (PFASs) from aqueous film forming foams (AFFFs) can hinder bioremediation of co-contaminants such as trichloroethene (TCE) and benzene, toluene, ethylbenzene, and xylene (BTEX). Anaerobic dechlorination can require bioaugmentation of Dehalococcoides, and for BTEX, oxygen is often sparged to stimulate in situ aerobic biodegradation. We tested PFAS inhibition to TCE and BTEX bioremediation by exposing an anaerobic TCE-dechlorinating coculture, an aerobic BTEX-degrading enrichment culture, and an anaerobic toluene-degrading enrichment culture to n-dimethyl perfluorohexane sulfonamido amine (AmPr-FHxSA), perfluorohexane sulfonamide (FHxSA), perfluorohexanesulfonic acid (PFHxS), or nonfluorinated surfactant sodium dodecyl sulfate (SDS). The anaerobic TCE-dechlorinating coculture was resistant to individual PFAS exposures but was inhibited by >1000× diluted AFFF. FHxSA and AmPr-FHxSA inhibited the aerobic BTEX-degrading enrichment. The anaerobic toluene-degrading enrichment was not inhibited by AFFF or individual PFASs. Increases in amino acids in the anaerobic TCE-dechlorinating coculture compared to the control indicated stress response, whereas the BTEX culture exhibited lower concentrations of all amino acids upon exposure to most surfactants (both fluorinated and nonfluorinated) compared to the control. These data suggest the main mechanisms of microbial toxicity are related to interactions with cell membrane synthesis as well as protein stress signaling.


Subject(s)
Biodegradation, Environmental , Hydrocarbons, Aromatic , Hydrocarbons, Aromatic/metabolism , Trichloroethylene/metabolism , Sulfonamides/metabolism
2.
Front Microbiol ; 14: 1243410, 2023.
Article in English | MEDLINE | ID: mdl-37637134

ABSTRACT

Anaerobic ammonium oxidizing (anammox) bacteria are utilized for high efficiency nitrogen removal from nitrogen-laden sidestreams in wastewater treatment plants. The anammox bacteria form a variety of competitive and mutualistic interactions with heterotrophic bacteria that often employ denitrification or dissimilatory nitrate reduction to ammonium (DNRA) for energy generation. These interactions can be heavily influenced by the influent ratio of ammonium to nitrite, NH4+:NO2-, where deviations from the widely acknowledged stoichiometric ratio (1:1.32) have been demonstrated to have deleterious effects on anammox efficiency. Thus, it is important to understand how variable NH4+:NO2- ratios impact the microbial ecology of anammox reactors. We observed the response of the microbial community in a lab scale anammox membrane bioreactor (MBR) to changes in the influent NH4+:NO2- ratio using both 16S rRNA gene and shotgun metagenomic sequencing. Ammonium removal efficiency decreased from 99.77 ± 0.04% when the ratio was 1:1.32 (prior to day 89) to 90.85 ± 0.29% when the ratio was decreased to 1:1.1 (day 89-202) and 90.14 ± 0.09% when the ratio was changed to 1:1.13 (day 169-200). Over this same timespan, the overall nitrogen removal efficiency (NRE) remained relatively unchanged (85.26 ± 0.01% from day 0-89, compared to 85.49 ± 0.01% from day 89-169, and 83.04 ± 0.01% from day 169-200). When the ratio was slightly increased to 1:1.17-1:1.2 (day 202-253), the ammonium removal efficiency increased to 97.28 ± 0.45% and the NRE increased to 88.21 ± 0.01%. Analysis of 16 S rRNA gene sequences demonstrated increased relative abundance of taxa belonging to Bacteroidetes, Chloroflexi, and Ignavibacteriae over the course of the experiment. The relative abundance of Planctomycetes, the phylum to which anammox bacteria belong, decreased from 77.19% at the beginning of the experiment to 12.24% by the end of the experiment. Analysis of metagenome assembled genomes (MAGs) indicated increased abundance of bacteria with nrfAH genes used for DNRA after the introduction of lower influent NH4+:NO2- ratios. The high relative abundance of DNRA bacteria coinciding with sustained bioreactor performance indicates a mutualistic relationship between the anammox and DNRA bacteria. Understanding these interactions could support more robust bioreactor operation at variable nitrogen loading ratios.

3.
Environ Sci Technol Lett ; 10(4): 337-342, 2023 Apr 11.
Article in English | MEDLINE | ID: mdl-37064824

ABSTRACT

Fungi and laccase mediator systems (LMSs) have a proven track record of oxidizing recalcitrant organic compounds. There has been considerable interest in applying LMSs to the treatment of perfluoroalkyl acids (PFAAs), a class of ubiquitous and persistent environmental contaminants. Some laboratory experiments have indicated modest losses of PFAAs over extended periods, but there have been no clear demonstrations of a transformation mechanism or the kinetics that would be needed for remediation applications. We set out to determine if this was a question of identifying and optimizing a rate-limiting step but discovered that observed losses of PFAAs were experimental artifacts. While unable to replicate the oxidation of PFAAs, we show that interactions of the PFAA compounds with laccase and laccase mediator mixtures could cause an artifact that mimics transformation (≲60%) of PFAAs. Furthermore, we employed a surrogate compound, carbamazepine (CBZ), and electron paramagnetic resonance spectroscopy to probe the formation of the radical species that had been proposed to be responsible for contaminant oxidation. We confirmed that under conditions where sufficient radical concentrations were produced to oxidize CBZ, no PFAA removal took place.

4.
Environ Sci Technol ; 56(22): 15478-15488, 2022 11 15.
Article in English | MEDLINE | ID: mdl-36257682

ABSTRACT

Sites impacted by aqueous film-forming foam (AFFF) contain co-contaminants that can stimulate biotransformation of polyfluoroalkyl substances. Here, we compare how microbial enrichments from AFFF-impacted soil amended with diethyl glycol monobutyl ether (found in AFFF), aromatic hydrocarbons (present in co-released fuels), acetate, and methane (substrates used or formed during bioremediation) impact the aerobic biotransformation of an AFFF-derived six-carbon electrochemical fluorination (ECF) precursor N-dimethyl ammonio propyl perfluorohexane sulfonamide (AmPr-FHxSA). We found that methane- and acetate-oxidizing cultures resulted in the highest yields of identifiable products (38 and 30%, respectively), including perfluorohexane sulfonamide (FHxSA) and perfluorohexane sulfonic acid (PFHxS). Using these data, we propose and detail a transformation pathway. Additionally, we examined chemical oxidation products of AmPr-FHxSA and FHxSA to provide insights on remediation strategies for AmPr-FHxSA. We demonstrate mineralization of these compounds using the sulfate radical and test their transformation during the total oxidizable precursor (TOP) assay. While perfluorohexanoic acid accounted for over 95% of the products formed, we demonstrate here for the first time two ECF-based precursors, AmPr-FHxSA and FHxSA, that produce PFHxS during the TOP assay. These findings have implications for monitoring poly- and perfluoroalkyl substances during site remediation and application of the TOP assay at sites impacted by ECF-based precursors.


Subject(s)
Fluorocarbons , Water Pollutants, Chemical , Fluorocarbons/analysis , Carbon , Water Pollutants, Chemical/analysis , Water , Sulfanilamide , Sulfonamides , Methane
5.
Environ Sci Technol ; 56(15): 10646-10655, 2022 08 02.
Article in English | MEDLINE | ID: mdl-35861429

ABSTRACT

Despite the prevalence of nitrate reduction in groundwater, the biotransformation of per- and polyfluoroalkyl substances (PFAS) under nitrate-reducing conditions remains mostly unknown compared with aerobic or strong reducing conditions. We constructed microcosms under nitrate-reducing conditions to simulate the biotransformation occurring at groundwater sites impacted by aqueous film-forming foams (AFFFs). We investigated the biotransformation of 6:2 fluorotelomer thioether amido sulfonate (6:2 FtTAoS), a principal PFAS constituent of several AFFF formulations using both quantitative liquid chromatography-tandem mass spectrometry (LC-MS/MS) and qualitative high-resolution mass spectrometry analyses. Our results reveal that the biotransformation rates of 6:2 FtTAoS under nitrate-reducing conditions were about 10 times slower than under aerobic conditions, but about 2.7 times faster than under sulfate-reducing conditions. Although minimal production of 6:2 fluorotelomer sulfonate and the terminal perfluoroalkyl carboxylate, perfluorohexanoate was observed, fluorotelomer thioether and sulfinyl compounds were identified in the aqueous samples. Evidence for the formation of volatile PFAS was obtained by mass balance analysis using the total oxidizable precursor assay and detection of 6:2 fluorotelomer thiol by gas chromatography-mass spectrometry. Our results underscore the complexity of PFAS biotransformation and the interactions between redox conditions and microbial biotransformation activities, contributing to the better elucidation of PFAS environmental fate and impact.


Subject(s)
Fluorocarbons , Water Pollutants, Chemical , Alkanesulfonates , Biotransformation , Chromatography, Liquid , Fluorocarbons/analysis , Nitrates/analysis , Sulfides , Tandem Mass Spectrometry , Water , Water Pollutants, Chemical/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...