Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
2.
Curr Biol ; 31(19): R1237-R1251, 2021 10 11.
Article in English | MEDLINE | ID: mdl-34637737

ABSTRACT

Animals originated in the oceans and evolved there for hundreds of millions of years before adapting to terrestrial environments. Today, oceans cover more than two-thirds of Earth and generate as much primary production as land. The path from the first macrobiota to modern marine biodiversity involved parallel increases in terrestrial nutrient input, marine primary production, species' abundance, metabolic rates, ecotypic diversity and taxonomic diversity. Bottom-up theories of ecosystem cascades arrange these changes in a causal sequence. At the base of marine food webs, nutrient fluxes and atmosphere-ocean chemistry interact with phytoplankton to regulate production. First-order consumers (e.g., zooplankton) might propagate changes in quantity and quality of phytoplankton to changes in abundance and diversity of larger predators (e.g., nekton). However, many uncertainties remain about the mechanisms and effect size of bottom-up control, particularly in oceans across the entire history of animal life. Here, we review modern and fossil evidence for hypothesized bottom-up pathways, and we assess the ramifications of these processes for four key intervals in marine ecosystems: the Ediacaran-Cambrian (635-485 million years ago), the Ordovician (485-444 million years ago), the Devonian (419-359 million years ago) and the Mesozoic (252-66 million years ago). We advocate for a clear articulation of bottom-up hypotheses to better understand causal relationships and proposed effects, combined with additional ecological experiments, paleontological documentation, isotope geochemistry and geophysical reconstructions. How small-scale ecological change transitions into large-scale evolutionary change remains an outstanding question for empirical and theoretical research.


Subject(s)
Biodiversity , Ecosystem , Animals , Food Chain , Fossils , Oceans and Seas , Phytoplankton
3.
Proc Natl Acad Sci U S A ; 118(18)2021 05 04.
Article in English | MEDLINE | ID: mdl-33903233

ABSTRACT

Abiotic niche lability reduces extinction risk by allowing species to adapt to changing environmental conditions in situ. In contrast, species with static niches must keep pace with the velocity of climate change as they track suitable habitat. The rate and frequency of niche lability have been studied on human timescales (months to decades) and geological timescales (millions of years), but lability on intermediate timescales (millennia) remains largely uninvestigated. Here, we quantified abiotic niche lability at 8-ka resolution across the last 700 ka of glacial-interglacial climate fluctuations, using the exceptionally well-known fossil record of planktonic foraminifera coupled with Atmosphere-Ocean Global Climate Model reconstructions of paleoclimate. We tracked foraminiferal niches through time along the univariate axis of mean annual temperature, measured both at the sea surface and at species' depth habitats. Species' temperature preferences were uncoupled from the global temperature regime, undermining a hypothesis of local adaptation to changing environmental conditions. Furthermore, intraspecific niches were equally similar through time, regardless of climate change magnitude on short timescales (8 ka) and across contrasts of glacial and interglacial extremes. Evolutionary trait models fitted to time series of occupied temperature values supported widespread niche stasis above randomly wandering or directional change. Ecotype explained little variation in species-level differences in niche lability after accounting for evolutionary relatedness. Together, these results suggest that warming and ocean acidification over the next hundreds to thousands of years could redistribute and reduce populations of foraminifera and other calcifying plankton, which are primary components of marine food webs and biogeochemical cycles.


Subject(s)
Adaptation, Physiological/genetics , Biological Evolution , Climate Models , Foraminifera/physiology , Plankton/physiology , Climate Change , Ecosystem , Foraminifera/genetics , Fossils , Humans , Seawater/microbiology , Temperature
4.
Curr Biol ; 30(1): 115-121.e5, 2020 01 06.
Article in English | MEDLINE | ID: mdl-31839449

ABSTRACT

Fundamental ecological and evolutionary theories, such as community saturation and diversity-dependent diversification, assume that biotic competition restricts resource use, and thus limits realized niche breadth and geographic range size [1-3]. This principle is called competitive exclusion. The corollary (ecological release) posits that, after competitors disappear from a region, species that were previously excluded will invade. Hundreds of field experiments have demonstrated ecological release in living populations. However, few of these studies were conducted in marine environments, and almost no work extended beyond 10 years and 1,000 km2 [4, 5]. In limited investigation of marine taxa at larger spatiotemporal scales, macroecologists and paleobiologists have observed little evidence of competitive exclusion [6-9]. Here, we quantified spatial trends in the rich and densely sampled fossil history of brachiopods and bivalves, while accounting for inconsistent sampling coverage through time using a new method of spatial standardization. The number of potential competitors in a region did not explain the geographic distribution of constituent species or genera. Furthermore, although ecological release predicts species to expand after extinction events, survivors of intervals with net species loss expanded as rarely as species in other intervals. Regression model estimates indicated different spatial responses of brachiopods and bivalves, and of habitat specialists and generalists, but no effect from changes in number of potential competitors. Biotic competition may control the distribution of populations, but, on larger spatiotemporal scales, non-competitive factors may have driven biogeographic patterns of brachiopods and bivalves.


Subject(s)
Animal Distribution , Aquatic Organisms , Biodiversity , Bivalvia , Fossils , Invertebrates , Animals , Biological Evolution , Models, Biological , Oceans and Seas
SELECTION OF CITATIONS
SEARCH DETAIL
...