Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters











Database
Language
Publication year range
1.
2.
Soft comput ; 27(6): 3427-3442, 2023.
Article in English | MEDLINE | ID: mdl-34421342

ABSTRACT

The highly spreading virus, COVID-19, created a huge need for an accurate and speedy diagnosis method. The famous RT-PCR test is costly and not available for many suspected cases. This article proposes a neurotrophic model to diagnose COVID-19 patients based on their chest X-ray images. The proposed model has five main phases. First, the speeded up robust features (SURF) method is applied to each X-ray image to extract robust invariant features. Second, three sampling algorithms are applied to treat imbalanced dataset. Third, the neutrosophic rule-based classification system is proposed to generate a set of rules based on the three neutrosophic values < T; I; F>, the degrees of truth, indeterminacy falsity. Fourth, a genetic algorithm is applied to select the optimal neutrosophic rules to improve the classification performance. Fifth, in this phase, the classification-based neutrosophic logic is proposed. The testing rule matrix is constructed with no class label, and the goal of this phase is to determine the class label for each testing rule using intersection percentage between testing and training rules. The proposed model is referred to as GNRCS. It is compared with six state-of-the-art classifiers such as multilayer perceptron (MLP), support vector machines (SVM), linear discriminant analysis (LDA), decision tree (DT), naive Bayes (NB), and random forest classifiers (RFC) with quality measures of accuracy, precision, sensitivity, specificity, and F1-score. The results show that the proposed model is powerful for COVID-19 recognition with high specificity and high sensitivity and less computational complexity. Therefore, the proposed GNRCS model could be used for real-time automatic early recognition of COVID-19.

3.
Pathogens ; 12(1)2022 Dec 22.
Article in English | MEDLINE | ID: mdl-36678365

ABSTRACT

Pre-trained machine learning models have recently been widely used to detect COVID-19 automatically from X-ray images. Although these models can selectively retrain their layers for the desired task, the output remains biased due to the massive number of pre-trained weights and parameters. This paper proposes a novel batch normalized convolutional neural network (BNCNN) model to identify COVID-19 cases from chest X-ray images in binary and multi-class frameworks with a dual aim to extract salient features that improve model performance over pre-trained image analysis networks while reducing computational complexity. The BNCNN model has three phases: Data pre-processing to normalize and resize X-ray images, Feature extraction to generate feature maps, and Classification to predict labels based on the feature maps. Feature extraction uses four repetitions of a block comprising a convolution layer to learn suitable kernel weights for the features map, a batch normalization layer to solve the internal covariance shift of feature maps, and a max-pooling layer to find the highest-level patterns by increasing the convolution span. The classifier section uses two repetitions of a block comprising a dense layer to learn complex feature maps, a batch normalization layer to standardize internal feature maps, and a dropout layer to avoid overfitting while aiding the model generalization. Comparative analysis shows that when applied to an open-access dataset, the proposed BNCNN model performs better than four other comparative pre-trained models for three-way and two-way class datasets. Moreover, the BNCNN requires fewer parameters than the pre-trained models, suggesting better deployment suitability on low-resource devices.

4.
Neuroimage ; 225: 117506, 2021 01 15.
Article in English | MEDLINE | ID: mdl-33127478

ABSTRACT

Using machine learning to predict the intensity of pain from fMRI has attracted rapidly increasing interests. However, due to remarkable inter- and intra-individual variabilities in pain responses, the performance of existing fMRI-based pain prediction models is far from satisfactory. The present study proposed a new approach which can design a prediction model specific to each individual or each experimental trial so that the specific model can achieve more accurate prediction of the intensity of nociceptive pain from single-trial fMRI responses. More precisely, the new approach uses a supervised k-means method on nociceptive-evoked fMRI responses to cluster individuals or trials into a set of subgroups, each of which has similar and consistent fMRI activation patterns. Then, for a new test individual/trial, the proposed approach chooses one subgroup of individuals/trials, which has the closest fMRI patterns to the test individual/trial, as training samples to train an individual-specific or a trial-specific pain prediction model. The new approach was tested on a nociceptive-evoked fMRI dataset and achieved significantly higher prediction accuracy than conventional non-specific models, which used all available training samples to train a model. The generalizability of the proposed approach is further validated by training specific models on one dataset and testing these models on an independent new dataset. This proposed individual-specific and trial-specific pain prediction approach has the potential to be used for the development of individualized and precise pain assessment tools in clinical practice.


Subject(s)
Brain/diagnostic imaging , Nociceptive Pain/diagnostic imaging , Supervised Machine Learning , Adult , Cluster Analysis , Female , Functional Neuroimaging , Humans , Least-Squares Analysis , Machine Learning , Magnetic Resonance Imaging , Male , Nociceptive Pain/physiopathology , Pain Measurement , Young Adult
5.
Behav Brain Res ; 375: 112142, 2019 12 16.
Article in English | MEDLINE | ID: mdl-31394144

ABSTRACT

Dynamic functional connectivity (dFC) analysis based on resting-state functional magnetic resonance imaging (fMRI) has gained popularity in recent years. Despite many studies have linked dFC patterns to various mental diseases and cognitive functions, little research has used dFC in the investigation of low-level sensory perception. The present study is aimed to explore resting-state fMRI dFC patterns correlated with thresholds of two types of perception, pain and touch, on an individual basis. We collected and analyzed resting-state fMRI data and thresholds of pain and touch from 80 healthy participants. dFC states were identified by using independent component analysis, sliding window correlation, and clustering, and then the thresholds of pain and touch are correlated with the occurrence frequencies of dFC states. A new permutation analysis is developed to make identified dFC states more interpretable. We found that the occurrence frequency of a default mode network (DMN)-dominated state was positively correlated with the pain threshold, while the occurrence frequency of a static functional connectivity (sFC)-like state was negatively correlated with the touch threshold. This study showed that the thresholds of pain and touch have distinct dFC correlates, suggesting different influences of baseline brain states on different types of sensory perception. This study also showed that dFC could serve as an indicator of an individual's pain sensitivity, which can be potentially used for pain management.


Subject(s)
Pain Threshold/physiology , Sensory Thresholds/physiology , Touch/physiology , Adult , Brain Mapping , Cluster Analysis , Female , Humans , Image Processing, Computer-Assisted , Magnetic Resonance Imaging , Male , Nerve Net/diagnostic imaging , Nerve Net/physiology , Neural Pathways/physiology , Young Adult
6.
Artif Intell Med ; 97: 105-117, 2019 06.
Article in English | MEDLINE | ID: mdl-30558825

ABSTRACT

Liver tumor segmentation from computed tomography (CT) images is a critical and challenging task. Due to the fuzziness in the liver pixel range, the neighboring organs of the liver with the same intensity, high noise and large variance of tumors. The segmentation process is necessary for the detection, identification, and measurement of objects in CT images. We perform an extensive review of the CT liver segmentation literature. Furthermore, in this paper, an improved segmentation approach based on watershed algorithm, neutrosophic sets (NS), and fast fuzzy c-mean clustering algorithm (FFCM) for CT liver tumor segmentation is proposed. To increase the contrast of the liver CT images, the intensity values are adjusted and high frequencies are removed using histogram equalization and median filter approach. It is followed by transforming the CT image to NS domain, which is described using three subsets (percentage of truth T, the percentage of indeterminacy I, and percentage of falsity F). The obtained NS image is enhanced by adaptive threshold and morphological operators to focus on liver parenchyma. The enhanced NS image passed to a watershed algorithm for post-segmentation process and liver parenchyma is extracted using the connected component algorithm. Finally, the liver tumors are segmented from the segmented liver using fast fuzzy c-mean (FFCM). A quantitative analysis is carried out to evaluate segmentation results using six different indices. The results show that the overall accuracy offered by the employed neutrosophic sets is accurate, less time consuming, less sensitive to noise and performs better on non-uniform CT images.


Subject(s)
Algorithms , Fuzzy Logic , Liver Neoplasms/diagnostic imaging , Tomography, X-Ray Computed/methods , Automation , Humans , Liver Neoplasms/pathology
7.
Annu Int Conf IEEE Eng Med Biol Soc ; 2015: 4254-7, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26737234

ABSTRACT

The early detection of breast cancer makes many women survive. In this paper, a CAD system classifying breast cancer thermograms to normal and abnormal is proposed. This approach consists of two main phases: automatic segmentation and classification. For the former phase, an improved segmentation approach based on both Neutrosophic sets (NS) and optimized Fast Fuzzy c-mean (F-FCM) algorithm was proposed. Also, post-segmentation process was suggested to segment breast parenchyma (i.e. ROI) from thermogram images. For the classification, different kernel functions of the Support Vector Machine (SVM) were used to classify breast parenchyma into normal or abnormal cases. Using benchmark database, the proposed CAD system was evaluated based on precision, recall, and accuracy as well as a comparison with related work. The experimental results showed that our system would be a very promising step toward automatic diagnosis of breast cancer using thermograms as the accuracy reached 100%.


Subject(s)
Breast Neoplasms , Algorithms , Databases, Factual , Female , Fuzzy Logic , Humans , Support Vector Machine
SELECTION OF CITATIONS
SEARCH DETAIL