Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
2.
Life Sci ; 336: 122318, 2024 Jan 01.
Article in English | MEDLINE | ID: mdl-38035992

ABSTRACT

AIM: Gentamicin-induced nephrotoxicity limits its widespread use as an effective antibacterial agent. Oxidative stress, inflammatory cytokines and apoptotic cell death are major participants in gentamicin-induced nephrotoxicity. We therefore, investigated whether dihydromyricetin (DHM), the antioxidant and anti-inflammatory flavonoid, could protect against the nephrotoxic effects of gentamicin. METHODS: Male Wistar rats administrated gentamicin (100 mg/kg/day, i.p.) for 8 days. DHM (400 mg/kg, p.o.) was concurrently given with gentamicin for 8 days. Control group received the vehicle of DHM and gentamicin. Histopathological examinations, biochemical measurements and immunohistochemical analyses were done at the end of the study. KEY FINDINGS: Treatment with DHM improved the gentamicin induced deterioration of renal functions; serum levels of urea, creatinine and cystatin-C as well as urinary levels of Kim-1 and NGAL, the sensitive indicators for early renal damage, were declined. Additionally, DHM abrogated gentamicin-induced changes in kidney morphology. These nephroprotective effects were possibly mediated via decreasing renal gentamicin buildup, activating the antioxidant enzymes GSH, SOD and CAT and decreasing lipid peroxidation and nitric oxide levels. Further, DHM suppressed renal inflammation and apoptotic cell death by decreasing the expression of nuclear factor-kappa B (NF-κB), TNF-alpha and caspase-3. These effects were correlated to the upregulation of renal SIRT3 expression. Also, DHM activated the regeneration and replacement of injured tubular cells with new ones via enhancing PAX2 expression. SIGNIFICANCE: DHM is a promising therapeutic target that could prevent acute renal injury induced by gentamicin and help renal tubular cells to recover through its antioxidant, anti-inflammatory and antiapoptotic properties.


Subject(s)
Drug-Related Side Effects and Adverse Reactions , Sirtuin 3 , Rats , Animals , Male , Humans , Gentamicins/toxicity , Sirtuin 3/metabolism , Antioxidants/pharmacology , Antioxidants/metabolism , Up-Regulation , Rats, Wistar , Kidney/metabolism , Oxidative Stress , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/metabolism , PAX2 Transcription Factor/metabolism
3.
Eur J Neurosci ; 58(10): 4211-4235, 2023 11.
Article in English | MEDLINE | ID: mdl-37840012

ABSTRACT

Sepsis induces neuroinflammation, BBB disruption, cerebral hypoxia, neuronal mitochondrial dysfunction, and cell death causing sepsis-associated encephalopathy (SAE). These pathological consequences lead to short- and long-term neurobehavioural deficits. Till now there is no specific treatment that directly improves SAE and its associated behavioural impairments. In this review, we discuss the underlying mechanisms of sepsis-induced brain injury with a focus on the latest progress regarding neuroprotective effects of SIRT1 (silent mating type information regulation-2 homologue-1). SIRT1 is an NAD+ -dependent class III protein deacetylase. It is able to modulate multiple downstream signals (including NF-κB, HMGB, AMPK, PGC1α and FoxO), which are involved in the development of SAE by its deacetylation activity. There are multiple recent studies showing the neuroprotective effects of SIRT1 in neuroinflammation related diseases. The proposed neuroprotective action of SIRT1 is meant to bring a promising therapeutic strategy for managing SAE and ameliorating its related behavioural deficits.


Subject(s)
Neuroprotective Agents , Sepsis-Associated Encephalopathy , Sepsis , Humans , Sirtuin 1/metabolism , Neuroinflammatory Diseases , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Sepsis/complications , Sepsis/metabolism , Sepsis/pathology
5.
Pharmaceuticals (Basel) ; 16(4)2023 Mar 23.
Article in English | MEDLINE | ID: mdl-37111238

ABSTRACT

BACKGROUND: Methotrexate (MTX) is an effective anticancer, anti-inflammatory, and immunomodulatory agent. However, it induces a serious pneumonitis that leads to irreversible fibrotic lung damage. This study addresses the protective role of the natural flavonoid dihydromyricetin (DHM) against MTX-induced pneumonitis via modulation of Nrf2/NF-κB signaling crosstalk. METHODS: Male Wistar rats were divided into 4 groups: control, which received the vehicle; MTX, which received a single MTX (40 mg/kg, i.p) at day 9 of the experiment; (MTX + DHM), which received oral DHM (300 mg/kg) for 14 days and methotrexate (40 mg/kg, i.p) on the 9th day; and DHM, which received DHM (300 mg/kg, p.o) for 14 days. RESULTS: Lung histopathological examination and scoring showed a decline in MTX-induced alveolar epithelial damage and decreased inflammatory cell infiltration by DHM treatment. Further, DHM significantly alleviated the oxidative stress by decreasing MDA while increasing GSH and SOD antioxidant levels. Additionally, DHM suppressed the pulmonary inflammation and fibrosis through decreasing levels of NF-κB, IL-1ß, and TGF-ß1 while promoting the expression of Nrf2, a positive regulator of antioxidant genes, and its downstream modulator, HO-1. CONCLUSION: This study identified DHM as a promising therapeutic target against MTX-induced pneumonitis via activation of Nrf2 antioxidant signaling while suppressing the NF-κB mediated inflammatory pathways.

6.
Life Sci ; 313: 121285, 2023 01 15.
Article in English | MEDLINE | ID: mdl-36526050

ABSTRACT

OBJECTIVE: Polycystic ovaries (PCO) is a hormonal disorder that is a leading cause of infertility. The formation of multiple persistent cysts and hormonal imbalance are hallmarks of PCO. Recent clinical studies reported a beneficial effect of the ketogenic diet (KD; high-fat, low-carbohydrate) on PCO. The aim of this study was to investigate the effect of the KD alone and in combination with metformin on letrozole-induced PCO in female rats. METHODS: Female rats were grouped into control and PCO (letrozole; 1 mg/kg for 21 days). The PCO group was subdivided into PCO (non-treated), PCO-metformin (300 mg/kg), PCO rats fed with KD only, and PCO rats treated with metformin and fed with KD. All groups continued to receive letrozole during the 21-day treatment period. At the end of the experiment, serum and ovaries were collected for further analysis. RESULTS: The untreated-PCO rats showed increased testosterone, LH/FSH ratio, and ovary weights. Disturbed apoptosis and proliferation balance were evident as a low caspase-3 activation and proliferating cell nuclear antigen expression and increased TGF-ß expression. The KD improved the letrozole-induced effects, which was comparable to the effect of metformin. Combining the KD with metformin treatment additively enhanced the metformin effect. CONCLUSION: Our results indicate that the KD has a protective role against PCO in rats, especially when combined with metformin. This study reveals a potential therapeutic role of the KD in PCO, which could prompt valuable future clinical applications.


Subject(s)
Diet, Ketogenic , Metformin , Polycystic Ovary Syndrome , Humans , Rats , Female , Animals , Letrozole/adverse effects , Metformin/pharmacology , Metformin/therapeutic use , Polycystic Ovary Syndrome/chemically induced , Polycystic Ovary Syndrome/drug therapy
8.
Life (Basel) ; 12(9)2022 Sep 02.
Article in English | MEDLINE | ID: mdl-36143406

ABSTRACT

BACKGROUND: Recently, crop byproducts are considered a hot topic and can be converted into beneficial products. Cauliflower is well-known for its protective effects against oxidative stress-induced damage. The current study aimed to investigate the chemical profile and the ameliorative effects of cauliflower leaf extract (CL) on gentamicin-induced renal and hepatic injuries in rats. METHODS: Cauliflower leaf was extracted with methanol to give the total methanol extract (TME) followed by the determination of total phenolic contents (TPC). Rats were divided into five groups; Group I was assigned as the control group, while the other groups were injected with gentamicin for ten days. Group II was given distilled water. Rats in groups III and IV were treated with oral CL (200 mg/kg and 400 mg/kg, respectively). Group V received L-cysteine (as a positive control). The functions of the kidneys and liver; oxidative stress and morphological and apoptotic changes of renal and hepatic tissues were assessed. RESULTS: The TME was subjected to chromatographic techniques to yield ferulic acid, vanillic acid, p-coumaric acid and quercetin. TPC was 72.31 mg GAE/g of dried extract. CL treatment dose-dependently ameliorated gentamicin-induced impaired kidney and liver functions and improved the histopathological appearance of both organs. It also reduced gentamicin-induced oxidative stress. CL demonstrated downregulation of mRNA and protein expressions of IL-1ß and NF-κB compared to nontreated rats. In silico interaction of the isolated compounds with amino acid residues of IL-1ß and NF-κB might explain the current findings. CONCLUSION: Taken together, this study raises the waste-to-wealth potential of cauliflower to mitigate gentamicin-induced hepatorenal injury and convert the waste agromaterials into valuable products.

9.
Front Med (Lausanne) ; 9: 904286, 2022.
Article in English | MEDLINE | ID: mdl-35814769

ABSTRACT

Objective: Sepsis-induced acute lung injury (ALI) and acute kidney injury (AKI) are major causes of mortality. Menthol is a natural compound that has anti-inflammatory and antioxidative actions. Since exaggerated inflammatory and oxidative stress are characteristics of sepsis, the aim of this study was to evaluate the effect of menthol against sepsis-induced mortality, ALI, and AKI. Methods: The cecal ligation and puncture (CLP) procedure was employed as a model of sepsis. Rats were grouped into sham, sham-Menthol, CLP, and CLP-Menthol (100 mg/kg, p.o). Key Findings: A survival study showed that menthol enhanced the survival after sepsis from 0% in septic group to 30%. Septic rats developed histological evidence of ALI and AKI. Menthol markedly suppressed sepsis induced elevation of tissue TNF-a, ameliorated sepsis-induced cleavage of caspase-3 and restored the antiapoptotic marker Bcl2. Significance: We introduced a role of the proliferating cell nuclear antigen (PCNA) in these tissues with a possible link to the damage induced by sepsis. PCNA level was markedly reduced in septic animals and menthol ameliorated this effect. Our data provide novel evidence that menthol protects against organ damage and decreases mortality in experimental sepsis.

10.
Environ Toxicol Pharmacol ; 94: 103907, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35697188

ABSTRACT

Gentamicin is a highly effective antibiotic. However, its major complication is nephrotoxicity. This study investigated the beneficial effects of empagliflozin against gentamicin-induced nephropathy. Kidney damage was induced in male Wistar rats by administration of gentamicin (100 mg/kg/day, i.p.) for 8 days. Two doses of empagliflozin (10 and 20 mg/kg, p.o.) were concomitantly given with gentamicin for 8 days. Gentamicin administration increased serum creatinine, urea, and cystatin C concentrations. Empagliflozin in both doses ameliorated these changes via mitigation of gentamicin-induced increase in renal oxidative stress, inflammation, and apoptosis. Empagliflozin added to GM treatment led to lower measured levels of TGF-B, NF-κB and caspase 3, and only the higher dose increased PAX2 levels indicating an improvement in tubular regeneration. Additionally, empagliflozin (20 mg/kg/day) markedly prevented gentamicin-induced histopathological changes. The protective effects of empagliflozin may be mediated by decreasing gentamicin concentration in renal tissue and possibly other effects like antioxidant and antiapoptotic effects.


Subject(s)
Acute Kidney Injury , Gentamicins , Acute Kidney Injury/chemically induced , Acute Kidney Injury/drug therapy , Acute Kidney Injury/prevention & control , Animals , Benzhydryl Compounds , Gentamicins/toxicity , Glucosides , Kidney , Male , NF-kappa B/metabolism , Oxidative Stress , Rats , Rats, Wistar , Signal Transduction , Sirtuin 1/metabolism
11.
Dose Response ; 19(1): 15593258211001259, 2021.
Article in English | MEDLINE | ID: mdl-33867893

ABSTRACT

Peptic ulcer disease is an injury of the alimentary tract that leads to a mucosal defect reaching the submucosa. Alpha-lipoic acid (ALA), a natural potent antioxidant, has been known as a gastroprotective drug yet its low bioavailability may restrict its therapeutic efficacy. This study aimed to formulate and optimize ALA using a self-nanoemulsifying drug delivery system (SNEDDS) with a size of nano-range, enhancing its absorption and augmenting its gastric ulcer protection efficacy. Three SNEDDS components were selected as the design factors: the concentrations of the pumpkin oil (X1, 10-30%), the surfactant tween 80 (X2, 20-50%), and the co-surfactant polyethylene glycol 200 (X3, 30-60%). The experimental design for the proposed mixture produced 16 formulations with varying ALA-SNEDDS formulation component percentages. The optimized ALA-SNEDDS formula was investigated for gastric ulcer protective effects by evaluating the ulcer index and by the determination of gastric mucosa oxidative stress parameters. Results revealed that optimized ALA-SNEDDS achieved significant improvement in gastric ulcer index in comparison with raw ALA. Histopathological findings confirmed the protective effect of the formulated optimized ALASNEDDS in comparison with raw ALA. These findings suggest that formulation of ALA in SNEDDS form would be more effective in gastric ulcer protection compared to pure ALA.

12.
Biomolecules ; 10(7)2020 07 06.
Article in English | MEDLINE | ID: mdl-32640741

ABSTRACT

A peptic ulcer is an alimentary tract injury that leads to a mucosal defect reaching the submucosa. This work aimed to optimize and maximize ellagic acid (EA) loading in Ca pectinate floating beads to maximize the release for 24 h. Three factors were selected: Ca pectinate concentration (X1, 1-3 w/v %), EA concentration (X2, 1-3 w/v %) and the dropping time (X3, 10-30 min). The factorial design proposed eight formulations. The optimized EA-Ca pectinate formulation was evaluated for the gastric ulcer index and the oxidative stress parameter determination of gastric mucosa. The results indicated that the optimum EA-Ca pectinate formula significantly improved the gastric ulcer index in comparison with raw EA. The protective effect of the optimized EA-Ca pectinate formula was further indicated by the histopathological features of the stomach. The results of the study indicate that an EA formulation in the form of Ca pectinate beads would be effective for protection against gastric ulcers because of Nonsteroidal anti-inflammatory drugs (NSAID) administration.


Subject(s)
Ellagic Acid/administration & dosage , Indomethacin/adverse effects , Pectins/chemistry , Stomach Ulcer/drug therapy , Animals , Disease Models, Animal , Ellagic Acid/chemistry , Ellagic Acid/pharmacology , Male , Oxidative Stress/drug effects , Particle Size , Rats , Stomach Ulcer/chemically induced , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL
...