Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Bioinformatics ; 24(1): 236, 2023 Jun 05.
Article in English | MEDLINE | ID: mdl-37277726

ABSTRACT

BACKGROUND: Biotite is a program library for sequence and structural bioinformatics written for the Python programming language. It implements widely used computational methods into a consistent and accessible package. This allows for easy combination of various data analysis, modeling and simulation methods. RESULTS: This article presents major functionalities introduced into Biotite since its original publication. The fields of application are shown using concrete examples. We show that the computational performance of Biotite for bioinformatics tasks is comparable to individual, special purpose software systems specifically developed for the respective single task. CONCLUSIONS: The results show that Biotite can be used as program library to either answer specific bioinformatics questions and simultaneously allow the user to write entire, self-contained software applications with sufficient performance for general application.


Subject(s)
Computer Simulation , Models, Molecular , Proteins , Software , Programming Languages , Sequence Alignment , Base Sequence , Proteins/chemistry , alpha-Globins/chemistry , Humans
2.
Algorithms Mol Biol ; 17(1): 7, 2022 Mar 29.
Article in English | MEDLINE | ID: mdl-35351165

ABSTRACT

BACKGROUND: Most experimentally determined structures of biomolecules lack annotated hydrogen positions due to their low electron density. However, thorough structure analysis and simulations require knowledge about the positions of hydrogen atoms. Existing methods for their prediction are either limited to a certain range of molecules or only work effectively on small compounds. RESULTS: We present a novel algorithm that compiles fragments of molecules with known hydrogen atom positions into a library. Using this library the method is able to predict hydrogen positions for molecules with similar moieties. We show that the method is able to accurately assign hydrogen atoms to most organic compounds including biomacromolecules, if a sufficiently large library is used. CONCLUSIONS: We bundled the algorithm into the open-source Python package and command line program Hydride. Since usually no additional parametrization is necessary for the problem at hand, the software works out-of-box for a wide range of molecular systems usually within a few seconds of computation time. Hence, we believe that Hydride could be a valuable tool for structural biologists and biophysicists alike.

SELECTION OF CITATIONS
SEARCH DETAIL
...