Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Tree Physiol ; 24(7): 753-63, 2004 Jul.
Article in English | MEDLINE | ID: mdl-15123447

ABSTRACT

As forests age, their structure and productivity change, yet in some cases, annual rates of water loss remain unchanged. To identify mechanisms that might explain such observations, and to determine if widely different age classes of forests differ functionally, we examined young (Y, approximately 25 years), mature (M, approximately 90 years) and old (O, approximately 250 years) ponderosa pine (Pinus ponderosa Dougl. ex P. Laws.) stands growing in a drought-prone region of central Oregon. Although the stands differed in tree leaf area index (LAIT) (Y = 0.9, M = 2.8, O = 2.1), cumulative tree transpiration measured by sap flow did not differ substantially during the growing season (100-112 mm). Yet when water was readily available, transpiration per unit leaf area of the youngest trees was about three times that of M trees and five times that of O trees. These patterns resulted from a nearly sixfold difference in leaf specific conductance (KL) between the youngest and oldest trees. At the time of maximum transpiration in the Y stand in May-June, gross carbon uptake (gross ecosystem production, GEP) was similar for Y and O stands despite an almost twofold difference in stand leaf area index (LAIS). However, the higher rate of water use by Y trees was not sustainable in the drought-prone environment, and between spring and late summer, KL of Y trees declined fivefold compared with a nearly twofold decline for M trees and a < 30% reduction in O trees. Because the Y stand contained a significant shrub understory and more exposed soil, there was no appreciable difference in mean daily latent energy fluxes between the Y stand and the older stands as measured by the eddy-covariance technique. These patterns resulted in 60 to 85% higher seasonal GEP and 55 to 65% higher water-use efficiency at the M and O stands compared with the Y stand.


Subject(s)
Ecosystem , Pinus ponderosa/physiology , Trees/physiology , Carbon Dioxide , Plant Leaves/physiology , Plant Transpiration/physiology , Soil , Time Factors , Water
2.
Tree Physiol ; 22(2-3): 189-96, 2002 Feb.
Article in English | MEDLINE | ID: mdl-11830415

ABSTRACT

We investigated the impact of seasonal soil water deficit on the processes driving net ecosystem exchange of carbon (NEE) in old-growth and recently regenerating ponderosa pine (Pinus ponderosa Doug. ex Laws.) stands in Oregon. We measured seasonal patterns of transpiration, canopy conductance and NEE, as well as soil water, soil temperature and soil respiration. The old-growth stand (O) included two primary age classes (50 and 250 years), had a leaf area index (LAI) of 2.1 and had never been logged. The recently regenerating stand (Y) consisted predominantly of 14-year-old ponderosa pine with an LAI of 1.0. Both stands experienced similar meteorological conditions with moderately cold wet winters and hot dry summers. By August, soil volumetric water content within the upper 30 cm had declined to a seasonal minimum of 0.07 at both sites. Between April and June, both stands showed similar rates of transpiration peaking at 0.96 mm day(-1); thereafter, trees at the Y site showed increasing drought stress with canopy stomatal resistance increasing 6-fold by mid-August relative to values for trees at the O site. Over the same period, predawn water potential (psi(pd)) of trees at the Y site declined from -0.54 to -1.24 MPa, whereas psi(pd) of trees at the O site remained greater than -0.8 MPa throughout the season. Soil respiration at the O site showed a strong seasonal correlation with soil temperature with no discernible constraints imposed by declining soil water. In contrast, soil respiration at the Y site peaked before seasonal maximal soil temperatures and declined thereafter with declining soil water. No pronounced seasonal pattern in daytime NEE was observed at either site between April and September. At the Y site this behavior was driven by concurrent soil water limitations on soil respiration and assimilation, whereas there was no evidence of seasonal soil water limitations on either process at the O site.


Subject(s)
Pinus/physiology , Carbon/physiology , Climate , Ecosystem , Oregon , Pinus ponderosa , Plant Transpiration/physiology , Seasons , Soil , Water/physiology
3.
Tree Physiol ; 21(5): 287-98, 2001 Mar.
Article in English | MEDLINE | ID: mdl-11262920

ABSTRACT

Drought stress plays an important role in determining both the structure and function of forest ecosystems, because of the close association between the carbon (C) and hydrological cycles. We used a detailed model of the soil-plant-atmosphere continuum to investigate the links between carbon uptake and the hydrological cycle in a mature, open stand of ponderosa pine (Pinus ponderosa Dougl. ex Laws.) at the Metolius river in eastern Oregon over a 2-year period (1996-1997). The model was parameterized from local measurements of vegetation structure, soil properties and meteorology, and tested against independent measurements of ecosystem latent energy (LE) and carbon fluxes and soil water content. Although the 2 years had very different precipitation regimes, annual uptake of C and total transpiration were similar in both years, according to both direct observation and simulations. There were important differences in ratios of evaporation to transpiration, and in the patterns of water abstraction from the soil profile, depending on the frequency of summer storms. Simulations showed that, during periods of maximum water limitation in late summer, plants maintained a remarkably constant evapotranspirative flux because of deep rooting, whereas changes in rates of C accumulation were determined by interactions between atmospheric vapor pressure deficit and stomatal conductance. Sensitivity analyses with the model suggest a highly conservative allocation strategy in the vegetation, focused belowground on accessing a soil volume large enough to buffer summer droughts, and optimized to account for interannual variability in precipitation. The model suggests that increased allocation to leaf area would greatly increase productivity, but with the associated risk of greater soil water depletion and drought stress in some years. By constructing sparse canopies and deep rooting systems, these stands balance reduced productivity in the short term with risk avoidance over the long term.


Subject(s)
Carbon/metabolism , Climate , Disasters , Ecology , Ecosystem , Models, Biological , Pinus ponderosa , Plant Leaves/metabolism , Plant Leaves/physiology , Plant Roots/metabolism , Plant Roots/physiology , Soil , Water/metabolism
4.
Tree Physiol ; 21(5): 299-308, 2001 Mar.
Article in English | MEDLINE | ID: mdl-11262921

ABSTRACT

We investigated key factors controlling mass and energy exchange by a young (6-year-old) ponderosa pine (Pinus ponderosa Laws.) plantation on the west side of the Sierra Nevada Mountains and an old-growth ponderosa pine forest (mix of 45- and 250-year-old trees) on the east side of the Cascade Mountains, from June through September 1997. At both sites, we operated eddy covariance systems above the canopy to measure net ecosystem exchange of carbon dioxide and water vapor, and made concurrent meteorological and ecophysiological measurements. Our objective was to understand and compare the controls on ecosystem processes in these two forests. Precipitation is much higher in the young plantation than in the old-growth forest (1660 versus 550 mm year-1), although both forests experienced decreasing soil water availability and increasing vapor pressure deficits (D) as the summer of 1997 progressed. As a result, drought stress increased at both sites during this period, and changes in D strongly influenced ecosystem conductance and net carbon uptake. Ecosystem conductance for a given D was higher in the young pine plantation than in the old-growth forest, but decreased dramatically following several days of high D in late summer, possibly because of xylem cavitation. Net CO2 exchange generally decreased with conductance at both sites, although values were roughly twice as high at the young site. Simulations with the 3-PG model, which included the effect of tree age on fluxes, suggest that, during the fall through spring period, milder temperatures and ample water availability at the young site provide better conditions for photosynthesis than at the old pine site. Thus, over the long-term, the young site can carry more leaf area, and the climatic conditions between fall and spring offset the more severe limitations imposed by summer drought.


Subject(s)
California , Carbon Dioxide/physiology , Disasters , Ecosystem , Oregon , Pinus ponderosa , Seasons , Water/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...