Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 79
Filter
1.
BMJ Open ; 14(6): e082659, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38925692

ABSTRACT

INTRODUCTION: While it is well recognised that aging is a heterogeneous process, our understanding of the determinants of biological aging and its heterogeneity remains unclear. The San Diego Nathan Shock Center (SD-NSC) Clinical Cohort aims to establish a resource of biospecimens and extensive donor clinical data such as physical, cognitive and sensory function to support other studies that aim to explore the heterogeneity of normal human aging and its biological underpinnings. METHODS AND ANALYSIS: The SD-NSC Clinical Cohort is composed of 80 individuals across the adult human lifespan. Strict inclusion and exclusion criteria are implemented to minimise extrinsic factors that may impede the study of normal aging. Across three visits, participants undergo extensive phenotyping for collection of physical performance, body composition, cognitive function, sensory ability, mental health and haematological data. During these visits, we also collected biospecimens including plasma, platelets, peripheral blood mononuclear cells and fibroblasts for banking and future studies on aging. ETHICS AND DISSEMINATION: Ethics approval from the UC San Diego School of Medicine Institutional Review Board (IRB #201 141 SHOCK Center Clinical Cohort, PI: Molina) was obtained on 11 November 2020. Written informed consent is obtained from all participants after objectives and procedures of the study have been fully explained. Congruent with the goal of establishing a core resource, biological samples and clinical data are made available to the research community through the SD-NSC.


Subject(s)
Aging , Humans , Aging/physiology , Male , Female , Adult , Cohort Studies , Aged , Middle Aged , California , Cognition , Biological Specimen Banks , Body Composition
2.
medRxiv ; 2024 May 27.
Article in English | MEDLINE | ID: mdl-38853946

ABSTRACT

Greater perceived physical fatigability and lower skeletal muscle energetics are predictors of mobility decline. Characterizing associations between muscle energetics and perceived fatigability may provide insight into potential targets to prevent mobility decline. We examined associations of in vivo (maximal ATP production, ATPmax) and ex vivo (maximal carbohydrate supported oxidative phosphorylation [max OXPHOS] and maximal fatty acid supported OXPHOS [max FAO OXPHOS]) measures of mitochondrial energetics with two measures of perceived physical fatigability, Pittsburgh Fatigability Scale (PFS, 0-50, higher=greater) and Rating of Perceived Exertion (RPE Fatigability, 6-20, higher=greater) after a slow treadmill walk. Participants from the Study of Muscle, Mobility and Aging (N=873) were 76.3±5.0 years old, 59.2% women, and 85.3% White. Higher muscle energetics (both in vivo and ex vivo ) were associated with lower perceived physical fatigability, all p<0.03. When stratified by sex, higher ATPmax was associated with lower PFS Physical for men only; higher max OXPHOS and max FAO OXPHOS were associated with lower RPE fatigability for both sexes. Higher skeletal muscle energetics were associated with 40-55% lower odds of being in the most (PFS≥25, RPE Fatigability≥12) vs least (PFS 0-4, RPE Fatigability 6-7) severe fatigability strata, all p<0.03. Being a woman was associated with 2-3 times higher odds of being in the most severe fatigability strata when controlling for ATPmax but not the in vivo measures (p<0.05). Better mitochondrial energetics were linked to lower fatigability and less severe fatigability in older adults. Findings imply that improving skeletal muscle energetics may mitigate perceived physical fatigability and prolong healthy aging.

3.
Obesity (Silver Spring) ; 32(6): 1125-1135, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38803308

ABSTRACT

OBJECTIVE: The aim of this study was to examine associations of ectopic adipose tissue (AT) with skeletal muscle (SM) mitochondrial bioenergetics in older adults. METHODS: Cross-sectional data from 829 adults ≥70 years of age were used. Abdominal, subcutaneous, and visceral AT and thigh muscle fat infiltration (MFI) were quantified by magnetic resonance imaging. SM mitochondrial energetics were characterized in vivo (31P-magnetic resonance spectroscopy; ATPmax) and ex vivo (high-resolution respirometry maximal oxidative phosphorylation [OXPHOS]). ActivPal was used to measure physical activity ([PA]; step count). Linear regression adjusted for covariates was applied, with sequential adjustment for BMI and PA. RESULTS: Independent of BMI, total abdominal AT (standardized [Std.] ß = -0.21; R2 = 0.09) and visceral AT (Std. ß = -0.16; R2 = 0.09) were associated with ATPmax (p < 0.01; n = 770) but not following adjustment for PA (p ≥ 0.05; n = 658). Visceral AT (Std. ß = -0.16; R2 = 0.25) and thigh MFI (Std. ß = -0.11; R2 = 0.24) were associated with carbohydrate-supported maximal OXPHOS independent of BMI and PA (p < 0.05; n = 609). Total abdominal AT (Std. ß = -0.19; R2 = 0.24) and visceral AT (Std. ß = -0.17; R2 = 0.24) were associated with fatty acid-supported maximal OXPHOS independent of BMI and PA (p < 0.05; n = 447). CONCLUSIONS: Skeletal MFI and abdominal visceral, but not subcutaneous, AT are inversely associated with SM mitochondrial bioenergetics in older adults independent of BMI. Associations between ectopic AT and in vivo mitochondrial bioenergetics are attenuated by PA.


Subject(s)
Body Mass Index , Energy Metabolism , Muscle, Skeletal , Humans , Female , Aged , Male , Energy Metabolism/physiology , Cross-Sectional Studies , Muscle, Skeletal/metabolism , Oxidative Phosphorylation , Magnetic Resonance Imaging , Adipose Tissue/metabolism , Body Fat Distribution , Mitochondria, Muscle/metabolism , Intra-Abdominal Fat/metabolism , Aged, 80 and over
4.
Article in English | MEDLINE | ID: mdl-38605684

ABSTRACT

BACKGROUND: The geroscience hypothesis posits that aging biological processes contribute to many age-related deficits, including the accumulation of multiple chronic diseases. Though only one facet of mitochondrial function, declines in muscle mitochondrial bioenergetic capacities may contribute to this increased susceptibility to multimorbidity. METHODS: The Study of Muscle, Mobility and Aging (SOMMA) assessed ex vivo muscle mitochondrial energetics in 764 older adults (mean age = 76.4, 56.5% women, and 85.9% non-Hispanic White) by high-resolution respirometry of permeabilized muscle fibers. We estimated the proportional odds ratio (POR [95% CI]) for the likelihood of greater multimorbidity (4 levels: 0 conditions, N = 332; 1 condition, N = 299; 2 conditions, N = 98; or 3+ conditions, N = 35) from an index of 11 conditions, per SD decrement in muscle mitochondrial energetic parameters. Distribution of conditions allowed for testing the associations of maximal muscle energetics with some individual conditions. RESULTS: Lower oxidative phosphorylation supported by fatty acids and/or complex I- and II-linked carbohydrates (eg, Max OXPHOSCI+CII) was associated with a greater multimorbidity index score (POR = 1.32 [1.13, 1.54]) and separately with diabetes mellitus (OR = 1.62 [1.26, 2.09]), depressive symptoms (OR = 1.45 [1.04, 2.00]) and possibly chronic kidney disease (OR = 1.57 [0.98, 2.52]) but not significantly with other conditions (eg, cardiac arrhythmia, chronic obstructive pulmonary disease). CONCLUSIONS: Lower muscle mitochondrial bioenergetic capacities were associated with a worse composite multimorbidity index score. Our results suggest that decrements in muscle mitochondrial energetics may contribute to a greater global burden of disease and are more strongly related to some conditions than others.


Subject(s)
Aging , Energy Metabolism , Mitochondria, Muscle , Multimorbidity , Humans , Female , Aged , Male , Energy Metabolism/physiology , Mitochondria, Muscle/metabolism , Aging/metabolism , Aging/physiology , Aged, 80 and over , Muscle, Skeletal/metabolism
5.
Article in English | MEDLINE | ID: mdl-38602189

ABSTRACT

Blood-based mitochondrial bioenergetic profiling is a feasible, economical, and minimally invasive approach that can be used to examine mitochondrial function and energy metabolism in human subjects. In this study, we use 2 complementary respirometric techniques to evaluate mitochondrial bioenergetics in both intact and permeabilized peripheral blood mononuclear cells (PBMCs) and platelets to examine sex dimorphism in mitochondrial function among older adults. Employing equal numbers of PBMCs and platelets to assess mitochondrial bioenergetics, we observe significantly higher respiration rates in female compared to male participants. Mitochondrial bioenergetic differences remain significant after controlling for independent parameters including demographic parameters (age, years of education), and cognitive parameters (mPACC5, COGDX). Our study illustrates that circulating blood cells, immune cells in particular, have distinctly different mitochondrial bioenergetic profiles between females and males. These differences should be taken into account as blood-based bioenergetic profiling is now commonly used to understand the role of mitochondrial bioenergetics in human health and aging.


Subject(s)
Energy Metabolism , Leukocytes, Mononuclear , Mitochondria , Humans , Male , Female , Mitochondria/metabolism , Aged , Energy Metabolism/physiology , Leukocytes, Mononuclear/metabolism , Blood Platelets/metabolism , Aging/physiology , Sex Factors , Sex Characteristics , Aged, 80 and over
6.
Sci Adv ; 10(10): eadj6411, 2024 Mar 08.
Article in English | MEDLINE | ID: mdl-38446898

ABSTRACT

Social stress experienced in childhood is associated with adverse health later in life. Mitochondrial function has been implicated as a mechanism for how stressful life events "get under the skin" to influence physical well-being. Using data from the Study of Muscle, Mobility, and Aging (n = 879, 59% women), linear models examined whether adverse childhood events (i.e., physical abuse) were associated with two measures of skeletal muscle mitochondrial energetics in older adults: (i) maximal adenosine triphosphate production (ATPmax) and (ii) maximal state 3 respiration (Max OXPHOS). Forty-five percent of the sample reported experiencing one or more adverse childhood events. After adjustment, each additional event was associated with -0.08 SD (95% confidence interval = -0.13, -0.02) lower ATPmax. No association was observed with Max OXPHOS. Adverse childhood events are associated with lower ATP production in later life. Findings indicate that mitochondrial function may be a mechanism for understanding how early social stress influences health in later life.


Subject(s)
Muscle, Skeletal , Musculoskeletal Physiological Phenomena , Female , Humans , Aged , Male , Adenosine Triphosphate , Aging , Mitochondria
7.
Geroscience ; 46(1): 349-365, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37368157

ABSTRACT

Mitochondrial improvements resulting from behavioral interventions, such as diet and exercise, are systemic and apparent across multiple tissues. Here, we test the hypothesis that factors present in serum, and therefore circulating throughout the body, can mediate changes in mitochondrial function in response to intervention. To investigate this, we used stored serum from a clinical trial comparing resistance training (RT) and RT plus caloric restriction (RT + CR) to examine effects of blood borne circulating factors on myoblasts in vitro. We report that exposure to dilute serum is sufficient to mediate bioenergetic benefits of these interventions. Additionally, serum-mediated bioenergetic changes can differentiate between interventions, recapitulate sex differences in bioenergetic responses, and is linked to improvements in physical function and inflammation. Using metabolomics, we identified circulating factors associated with changes in mitochondrial bioenergetics and the effects of interventions. This study provides new evidence that circulating factors play a role in the beneficial effects of interventions that improve healthspan among older adults. Understanding the factors that drive improvements in mitochondrial function is a key step towards predicting intervention outcomes and developing strategies to countermand systemic age-related bioenergetic decline.


Subject(s)
Diet , Mitochondria , Humans , Male , Female , Mitochondria/metabolism , Energy Metabolism/physiology , Exercise/physiology , Exercise Therapy
8.
Aging Cell ; 23(2): e14038, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37961856

ABSTRACT

Calorie restriction (CR) with adequate nutrient intake is a potential geroprotective intervention. To advance this concept in humans, we tested the hypothesis that moderate CR in healthy young-to-middle-aged individuals would reduce circulating biomarkers of cellular senescence, a fundamental mechanism of aging and aging-related conditions. Using plasma specimens from the Comprehensive Assessment of Long-term Effects of Reducing Intake of Energy (CALERIE™) phase 2 study, we found that CR significantly reduced the concentrations of several senescence biomarkers at 12 and 24 months compared to an ad libitum diet. Using machine learning, changes in biomarker concentrations emerged as important predictors of the change in HOMA-IR and insulin sensitivity index at 12 and 24 months, and the change in resting metabolic rate residual at 12 months. Finally, using adipose tissue RNA-sequencing data from a subset of participants, we observed a significant reduction in a senescence-focused gene set in response to CR at both 12 and 24 months compared to baseline. Our results advance the understanding of the effects of CR in humans and further support a link between cellular senescence and metabolic health.


Subject(s)
Aging , Caloric Restriction , Middle Aged , Humans , Cellular Senescence/genetics , Energy Intake , Biomarkers
10.
Article in English | MEDLINE | ID: mdl-38150179

ABSTRACT

The age-related decline in muscle mitochondrial energetics contributes to the loss of mobility in older adults. Women experience a higher prevalence of mobility impairment compared to men, but it is unknown whether sex-specific differences in muscle energetics underlie this disparity. In the Study of Muscle, Mobility and Aging (SOMMA), muscle energetics were characterized using in vivo phosphorus-31 magnetic resonance spectroscopy and high-resolution respirometry of vastus lateralis biopsies in 773 participants (56.4% women, age 70-94 years). A Short Physical Performance Battery (SPPB) score ≤8 was used to define lower-extremity mobility impairment. Muscle mitochondrial energetics were lower in women compared to men (eg, Maximal Complex I&II OXPHOS: Women = 55.06 ± 15.95; Men = 65.80 ± 19.74; p < .001) and in individuals with mobility impairment compared to those without (eg, Maximal Complex I&II OXPHOS in women: SPPB ≥ 9 = 56.59 ± 16.22; SPPB ≤ 8 = 47.37 ± 11.85; p < .001). Muscle energetics were negatively associated with age only in men (eg, Maximal ETS capacity: R = -0.15, p = .02; age/sex interaction, p = .04), resulting in muscle energetics measures that were significantly lower in women than men in the 70-79 age group but not the 80+ age group. Similarly, the odds of mobility impairment were greater in women than men only in the 70-79 age group (70-79 age group, odds ratio [OR]age-adjusted = 1.78, 95% confidence interval [CI] = 1.03, 3.08, p = .038; 80+ age group, ORage-adjusted = 1.05, 95% CI = 0.52, 2.15, p = .89). Accounting for muscle energetics attenuated up to 75% of the greater odds of mobility impairment in women. Women had lower muscle mitochondrial energetics compared to men, which largely explain their greater odds of lower-extremity mobility impairment.


Subject(s)
Aging , Muscle, Skeletal , Male , Humans , Female , Aged , Aged, 80 and over , Aging/physiology , Quadriceps Muscle , Lower Extremity
11.
medRxiv ; 2023 Nov 10.
Article in English | MEDLINE | ID: mdl-37986822

ABSTRACT

Objective: Examine the association of ectopic adipose tissue (AT) with skeletal muscle (SM) mitochondrial bioenergetics in older adults. Methods: Cross-sectional data from 829 older adults ≥70 years was used. Total abdominal, subcutaneous, and visceral AT; and thigh muscle fat infiltration (MFI) was quantified by MRI. SM mitochondrial energetics were characterized using in vivo 31 P-MRS (ATP max ) and ex vivo high-resolution respirometry (maximal oxidative phosphorylation (OXPHOS)). ActivPal was used to measure PA (step count). Linear regression models adjusted for covariates were applied, with sequential adjustment for BMI and PA. Results: Independent of BMI, total abdominal (standardized (Std.) ß=-0.21; R 2 =0.09) and visceral AT (Std. ß=-0.16; R 2 =0.09) were associated with ATP max ( p <0.01), but not after further adjustment for PA (p≥0.05). Visceral AT (Std. ß=-0.16; R 2 =0.25) and thigh MFI (Std. ß=-0.11; R 2 =0.24) were negatively associated with carbohydrate-supported maximal OXPHOS independent of BMI and PA ( p <0.05). Total abdominal AT (Std. ß=-0.19; R 2 =0.24) and visceral AT (Std. ß=-0.17; R 2 =0.24) were associated with fatty acid-supported maximal OXPHOS independent of BMI and PA (p<0.05). Conclusions: Skeletal MFI and abdominal visceral, but not subcutaneous AT, are inversely associated with SM mitochondrial bioenergetics in older adults independent of BMI. Associations between ectopic AT and in vivo mitochondrial bioenergetics are attenuated by PA.

12.
medRxiv ; 2023 Nov 08.
Article in English | MEDLINE | ID: mdl-37986889

ABSTRACT

Social stress experienced in childhood is associated with adverse health later in life. Mitochondrial function has been implicated as a mechanism for how stressful life events "get under the skin" to influence physical wellbeing. Using data from the Study of Muscle, Mobility and Aging (n=879, 59% women), linear models examined whether adverse childhood events (i.e., physical abuse) were associated with two measures of skeletal muscle mitochondrial energetics in older adults: (1) maximal adenosine triphosphate production (ATP max ) and (2) maximal state 3 respiration (Max OXPHOS). Forty-five percent of the sample reported experiencing 1+ adverse childhood event. After adjustment, each additional event was associated with -0.07 SD (95% CI= - 0.12, -0.01) lower ATP max . No association was observed with Max OXPHOS. Adverse childhood events are associated with lower ATP production in later life. Findings indicate that mitochondrial function may be a mechanism in understanding how early social stress influences health in later life.

13.
medRxiv ; 2023 Nov 09.
Article in English | MEDLINE | ID: mdl-37987007

ABSTRACT

The age-related decline in muscle mitochondrial energetics contributes to the loss of mobility in older adults. Women experience a higher prevalence of mobility impairment compared to men, but it is unknown whether sex-specific differences in muscle energetics underlie this disparity. In the Study of Muscle, Mobility and Aging (SOMMA), muscle energetics were characterized using in vivo phosphorus-31 magnetic resonance spectroscopy and high-resolution respirometry of vastus lateralis biopsies in 773 participants (56.4% women, age 70-94 years). A Short Physical Performance Battery score ≤ 8 was used to define lower-extremity mobility impairment. Muscle mitochondrial energetics were lower in women compared to men (e.g. Maximal Complex I&II OXPHOS: Women=55.06 +/- 15.95; Men=65.80 +/- 19.74; p<0.001) and in individuals with mobility impairment compared to those without (e.g., Maximal Complex I&II OXPHOS in women: SPPB≥9=56.59 +/- 16.22; SPPB≤8=47.37 +/- 11.85; p<0.001). Muscle energetics were negatively associated with age only in men (e.g., Maximal ETS capacity: R=-0.15, p=0.02; age/sex interaction, p=0.04), resulting in muscle energetics measures that were significantly lower in women than men in the 70-79 age group but not the 80+ age group. Similarly, the odds of mobility impairment were greater in women than men only in the 70-79 age group (70-79 age group, OR age-adjusted =1.78, 95% CI=1.03, 3.08, p=0.038; 80+ age group, OR age-adjusted =1.05, 95% CI=0.52, 2.15, p=0.89). Accounting for muscle energetics attenuated up to 75% of the greater odds of mobility impairment in women. Women had lower muscle mitochondrial energetics compared to men, which largely explain their greater odds of lower-extremity mobility impairment.

15.
Ann Bot ; 132(3): 413-428, 2023 11 23.
Article in English | MEDLINE | ID: mdl-37675505

ABSTRACT

BACKGROUND AND AIMS: Phosphoenolpyruvate (PEP) carboxylase (PEPC) catalyses the irreversible carboxylation of PEP with bicarbonate to produce oxaloacetate. This reaction powers the carbon-concentrating mechanism (CCM) in plants that perform C4 photosynthesis. This CCM is generally driven by a single PEPC gene product that is highly expressed in the cytosol of mesophyll cells. We found two C4 grasses, Panicum miliaceum and Echinochloa colona, that each have two highly expressed PEPC genes. We characterized the kinetic properties of the two most abundant PEPCs in E. colona and P. miliaceum to better understand how the enzyme's amino acid structure influences its function. METHODS: Coding sequences of the two most abundant PEPC proteins in E. colona and P. miliaceum were synthesized by GenScript and were inserted into bacteria expression plasmids. Point mutations resulting in substitutions at conserved amino acid residues (e.g. N-terminal serine and residue 890) were created via site-directed PCR mutagenesis. The kinetic properties of semi-purified plant PEPCs from Escherichia coli were analysed using membrane-inlet mass spectrometry and a spectrophotometric enzyme-coupled reaction. KEY RESULTS: The two most abundant P. miliaceum PEPCs (PmPPC1 and PmPPC2) have similar sequence identities (>95 %), and as a result had similar kinetic properties. The two most abundant E. colona PEPCs (EcPPC1 and EcPPC2) had identities of ~78 % and had significantly different kinetic properties. The PmPPCs and EcPPCs had different responses to allosteric inhibitors and activators, and substitutions at the conserved N-terminal serine and residue 890 resulted in significantly altered responses to allosteric regulators. CONCLUSIONS: The two, significantly expressed C4Ppc genes in P. miliaceum were probably the result of genomes combining from two closely related C4Panicum species. We found natural variation in PEPC's sensitivity to allosteric inhibition that seems to bypass the conserved 890 residue, suggesting alternative evolutionary pathways for increased malate tolerance and other kinetic properties.


Subject(s)
Phosphoenolpyruvate Carboxylase , Poaceae , Amino Acid Sequence , Poaceae/genetics , Poaceae/metabolism , Phosphoenolpyruvate Carboxylase/genetics , Phosphoenolpyruvate Carboxylase/chemistry , Phosphoenolpyruvate Carboxylase/metabolism , Biological Evolution , Plants/metabolism , Serine/genetics , Kinetics
16.
J Gerontol A Biol Sci Med Sci ; 78(12): 2187-2202, 2023 12 01.
Article in English | MEDLINE | ID: mdl-37738628

ABSTRACT

Alzheimer's disease (AD) is a progressive, age-related neurodegenerative disorder that affects a large proportion of the older population. It currently lacks effective treatments, placing a heavy burden on patients, families, health care systems, and society. This is mainly due to our limited comprehension of the pathophysiology of AD progression, as well as the lack of effective drug targets and intervention timing to address the underlying pathology. AD is a multifactorial condition, and emerging evidence suggests that abnormalities in the gut microbiota play a significant role as environmental and multifaceted contributors to AD, although the exact mechanisms are yet to be fully explored. Changes in the composition of microbiota influence host neuronal health through their metabolites. These metabolites regulate intestinal epithelia, blood-brain barrier permeability, and neuroinflammation by affecting mitochondrial function. The decline in the proportion of beneficial microbes and their essential metabolites during aging and AD is directly linked to poor mitochondrial function, although the specific mechanisms remain unclear. In this review, we discuss recent developments in understanding the impact of the microbiome and its metabolites on various cell types, their influence on the integrity of the gut and blood-brain barriers, systemic and brain inflammation, and cell-specific effects in AD pathology. This information is expected to pave the way for a new understanding of the interactions between microbiota and mitochondria in AD, providing a foundation for the development of novel treatments for AD.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Gastrointestinal Microbiome , Microbiota , Humans , Mitochondria , Nerve Degeneration , Brain
17.
Neurosci Biobehav Rev ; 152: 105320, 2023 09.
Article in English | MEDLINE | ID: mdl-37453725

ABSTRACT

Social disadvantage and diet composition independently impact myriad dimensions of health. They are closely entwined, as social disadvantage often yields poor diet quality, and may interact to fuel differential health outcomes. This paper reviews effects of psychosocial stress and diet composition on health in nonhuman primates and their implications for aging and human health. We examined the effects of social subordination stress and Mediterranean versus Western diet on multiple systems. We report that psychosocial stress and Western diet have independent and additive adverse effects on hypothalamic-pituitary-adrenal and autonomic nervous system reactivity to psychological stressors, brain structure, and ovarian function. Compared to the Mediterranean diet, the Western diet resulted in accelerated aging, nonalcoholic fatty liver disease, insulin resistance, gut microbial changes associated with increased disease risk, neuroinflammation, neuroanatomical perturbations, anxiety, and social isolation. This comprehensive, multisystem investigation lays the foundation for future investigations of the mechanistic underpinnings of psychosocial stress and diet effects on health, and advances the promise of the Mediterranean diet as a therapeutic intervention on psychosocial stress.


Subject(s)
Diet, Mediterranean , Primates , Animals , Humans , Stress, Psychological , Anxiety , Social Isolation
18.
Data Brief ; 48: 109114, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37122918

ABSTRACT

To study human traumatic brain injury (TBI) mechanics, a realistic surrogate must be developed for testing in impact experiments. In this data brief, materials used to simulate brain tissue and skull are characterized for application in a full-scale human head phantom. Polyacrylamide hydrogels are implemented as tissue scaffolds and tissue mimics because they are bioinert and tunable. These properties make them ideal for use as brain tissue in studies that simulate head impacts. The objective is to modify hydrogel formulations to have minimal swelling and optical clarity while maintaining properties that mimic brain tissue, such as density, viscoelastic properties, and rheological properties. Secondly, polylactic acid (PLA) polymers are 3D printed to create biomimetic skulls to enclose the hydrogel brain tissue mimic or brain phantom. PLA samples are printed and tested to determine their mechanical strength with the intention of roughly matching human skull properties. Hydrogel data was obtained with an oscillatory rheometer, while PLA samples were tested using a mechanical tester with a 3-point bend setup. The present data brief highlights several hydrogel formulations and compares them to identify the benefits of each formula and reports mechanical values of 3D printed PLA samples with 100% grid infill patterns applied in a skull model.

19.
JAMA Cardiol ; 8(6): 575-584, 2023 06 01.
Article in English | MEDLINE | ID: mdl-37163294

ABSTRACT

Importance: The pathophysiology of exercise intolerance in patients with heart failure with preserved ejection fraction (HFpEF) remains incompletely understood. Multiple lines of evidence suggest that abnormal skeletal muscle metabolism is a key contributor, but the mechanisms underlying metabolic dysfunction remain unresolved. Objective: To evaluate the associations of skeletal muscle mitochondrial function using respirometric analysis of biopsied muscle fiber bundles from patients with HFpEF with exercise performance. Design, Setting, and Participants: In this cross-sectional study, muscle fiber bundles prepared from fresh vastus lateralis biopsies were analyzed by high-resolution respirometry to provide detailed analyses of mitochondrial oxidative phosphorylation, including maximal capacity and the individual contributions of complex I-linked and complex II-linked respiration. These bioenergetic data were compared between patients with stable chronic HFpEF older than 60 years and age-matched healthy control (HC) participants and analyzed for intergroup differences and associations with exercise performance. All participants were treated at a university referral center, were clinically stable, and were not undergoing regular exercise or diet programs. Data were collected from March 2016 to December 2017, and data were analyzed from November 2020 to May 2021. Main Outcomes and Measures: Skeletal muscle mitochondrial function, including maximal capacity and respiration linked to complex I and complex II. Exercise performance was assessed by peak exercise oxygen consumption, 6-minute walk distance, and the Short Physical Performance Battery. Results: Of 72 included patients, 50 (69%) were women, and the mean (SD) age was 69.6 (6.1) years. Skeletal muscle mitochondrial function measures were all markedly lower in skeletal muscle fibers obtained from patients with HFpEF compared with HCs, even when adjusting for age, sex, and body mass index. Maximal capacity was strongly and significantly correlated with peak exercise oxygen consumption (R = 0.69; P < .001), 6-minute walk distance (R = 0.70; P < .001), and Short Physical Performance Battery score (R = 0.46; P < .001). Conclusions and Relevance: In this study, patients with HFpEF had marked abnormalities in skeletal muscle mitochondrial function. Severely reduced maximal capacity and complex I-linked and complex II-linked respiration were associated with exercise intolerance and represent promising therapeutic targets.


Subject(s)
Heart Failure , Humans , Female , Aged , Male , Heart Failure/physiopathology , Stroke Volume/physiology , Cross-Sectional Studies , Oxygen Consumption/physiology , Exercise Tolerance/physiology , Muscle, Skeletal , Respiration , Mitochondria/metabolism , Mitochondria/pathology
20.
Diabetes ; 72(9): 1235-1250, 2023 09 01.
Article in English | MEDLINE | ID: mdl-37257047

ABSTRACT

In obesity, CD11c+ innate immune cells are recruited to adipose tissue and create an inflammatory state that causes both insulin and catecholamine resistance. We found that ablation of Gnas, the gene that encodes Gαs, in CD11c expressing cells protects mice from obesity, glucose intolerance, and insulin resistance. Transplantation studies showed that the lean phenotype was conferred by bone marrow-derived cells and did not require adaptive immunity. Loss of cAMP signaling was associated with increased adipose tissue norepinephrine and cAMP signaling, and prevention of catecholamine resistance. The adipose tissue had reduced expression of catecholamine transport and degradation enzymes, suggesting that the elevated norepinephrine resulted from decreased catabolism. Collectively, our results identified an important role for cAMP signaling in CD11c+ innate immune cells in whole-body metabolism by controlling norepinephrine levels in white adipose tissue, modulating catecholamine-induced lipolysis and increasing thermogenesis, which, together, created a lean phenotype. ARTICLE HIGHLIGHTS: We undertook this study to understand how immune cells communicate with adipocytes, specifically, whether cAMP signaling in the immune cell and the adipocyte are connected. We identified a reciprocal interaction between CD11c+ innate immune cells and adipocytes in which high cAMP signaling in the immune cell compartment induces low cAMP signaling in adipocytes and vice versa. This interaction regulates lipolysis in adipocytes and inflammation in immune cells, resulting in either a lean, obesity-resistant, and insulin-sensitive phenotype, or an obese, insulin-resistant phenotype.


Subject(s)
Diet, High-Fat , Insulin Resistance , Obesity , Animals , Mice , Adipose Tissue, White/metabolism , Catecholamines/metabolism , Diet, High-Fat/adverse effects , Insulin/metabolism , Insulin Resistance/physiology , Mice, Inbred C57BL , Norepinephrine/metabolism , Obesity/etiology , Obesity/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...