Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
Add more filters











Publication year range
1.
Sci Rep ; 11(1): 13430, 2021 06 28.
Article in English | MEDLINE | ID: mdl-34183758

ABSTRACT

Many innate immune receptors function collaboratively to detect and elicit immune responses to pathogens, but the physical mechanisms that govern the interaction and signaling crosstalk between the receptors are unclear. In this study, we report that the signaling crosstalk between Fc gamma receptor (FcγR) and Toll-like receptor (TLR)2/1 can be overall synergistic or inhibitory depending on the spatial proximity between the receptor pair on phagosome membranes. Using a geometric manipulation strategy, we physically altered the spatial distribution of FcγR and TLR2 on single phagosomes. We demonstrate that the signaling synergy between FcγR and TLR2/1 depends on the proximity of the receptors and decreases as spatial separation between them increases. However, the inhibitory effect from FcγRIIb on TLR2-dependent signaling is always present and independent of receptor proximity. The overall cell responses are an integration from these two mechanisms. This study presents quantitative evidence that the nanoscale proximity between FcγR and TLR2 functions as a key regulatory mechanism in their signaling crosstalk.


Subject(s)
Phagosomes/immunology , Receptor Cross-Talk/immunology , Receptors, IgG/immunology , Toll-Like Receptor 1/immunology , Toll-Like Receptor 2/immunology , Animals , Cytokines/metabolism , Immunity, Innate , Immunoglobulin G/immunology , Intracellular Membranes/immunology , Mice , Protein Transport , RAW 264.7 Cells , Signal Transduction , Syk Kinase/physiology , Transcription Factor RelA/metabolism
2.
Front Plant Sci ; 12: 624656, 2021.
Article in English | MEDLINE | ID: mdl-33664759

ABSTRACT

Industrial accidents, such as the Fukushima and Chernobyl disasters, release harmful chemicals into the environment, covering large geographical areas. Natural flora may serve as biological sensors for detecting metal contamination, such as cesium. Spectral detection of plant stresses typically employs a few select wavelengths and often cannot distinguish between different stress phenotypes. In this study, we apply hyperspectral reflectance imaging in the visible and near-infrared along with multivariate curve resolution (MCR) analysis to identify unique spectral signatures of three stresses in Arabidopsis thaliana: salt, copper, and cesium. While all stress conditions result in common stress physiology, hyperspectral reflectance imaging and MCR analysis produced unique spectral signatures that enabled classification of each stress. As the level of potassium was previously shown to affect cesium stress in plants, the response of A. thaliana to cesium stress under variable levels of potassium was also investigated. Increased levels of potassium reduced the spectral response of A. thaliana to cesium and prevented changes to chloroplast cellular organization. While metal stress mechanisms may vary under different environmental conditions, this study demonstrates that hyperspectral reflectance imaging with MCR analysis can distinguish metal stress phenotypes, providing the potential to detect metal contamination across large geographical areas.

3.
J Phys Chem Lett ; 11(22): 9834-9841, 2020 Nov 19.
Article in English | MEDLINE | ID: mdl-33170707

ABSTRACT

This study reveals the unique role on Janus particles of the solid-solid interface at the boundary in determining particle interactions and assembly. In an aqueous ionic liquid (IL) solution, Janus spheres adopt intriguing orientations with their boundaries pinned on the glass substrate. It was further discovered that the orientation was affected by the particle amphiphilicity as well as the chemical structure and concentration of the IL. Further characterization suggests that the adsorption on the hydrophilic side is due to both an electrostatic interaction and hydrogen bonding, while adsorption on the hydrophobic side is due to hydrophobic attraction. Through the concerted interplay of all these interactions, the amphiphilic boundary may attract an excessive amount of IL cations, which guide the unique orientations of the Janus spheres. The results highlight the importance of the Janus boundary that has not been recognized previously. Adsorption at the solid-solid interfaces may inspire new applications in areas such as separation and catalysis.

4.
Appl Opt ; 58(22): 6027-6037, 2019 Aug 01.
Article in English | MEDLINE | ID: mdl-31503923

ABSTRACT

When attempting to integrate single-molecule fluorescence microscopy with microfabricated devices such as microfluidic channels, fabrication constraints may prevent using traditional coverslips. Instead, the fabricated devices may require imaging through material with a different thickness or index of refraction. Altering either can easily reduce the quality of the image formation (measured by the Strehl ratio) by a factor of 2 or more, reducing the signal-to-noise ratio accordingly. In such cases, successful detection of single-molecule fluorescence may prove difficult or impossible. Here we provide software to calculate the effect of non-design materials upon the Strehl ratio or ensquared energy and explore the impact of common materials used in microfabrication.

5.
Langmuir ; 35(18): 6106-6111, 2019 May 07.
Article in English | MEDLINE | ID: mdl-30950625

ABSTRACT

We investigate how amphiphilic Janus particle assembly structures, including clusters and striped two-dimensional (2D) crystals, are influenced by the addition of surfactant molecules. Janus particles are fabricated using silica particles coated with Au on one side, which is further modified with a hydrophobic self-assembled monolayer. Analysis on the cluster assembly structures suggests that in addition to hydrophobic attraction, van der Waals (VDW) attraction plays a significant role in the assembly process, which is modulated by the Au coating thickness. This is manifested by the cluster formation induced primarily by VDW forces when the hydrophobic attraction between particles is diminished by adding the surfactant. In the 2D crystal case, sodium dodecyl sulfate (SDS) and Tween 20 show opposite trends in how they affect assembly structures and particle dynamics. SDS shortens the stripes in 2D crystals and accelerates the rotation of particles, whereas Tween 20 extends the straight stripes and slows down the particle rotation. We interpret the results by considering SDS adsorption on the Au-coated hemisphere of the Janus particles and Tween 20 forming hydrogen bonds with the silica hemisphere of Janus particles. Our study offers a simple approach to change the assembly structures of Janus particles, and it provides principles and guidance for potential applications of Janus particles coupled with small amphiphilic molecules.

6.
Photosynth Res ; 141(3): 259-271, 2019 Sep.
Article in English | MEDLINE | ID: mdl-30903482

ABSTRACT

The cyanobacterial culture HT-58-2, composed of a filamentous cyanobacterium and accompanying community bacteria, produces chlorophyll a as well as the tetrapyrrole macrocycles known as tolyporphins. Almost all known tolyporphins (A-M except K) contain a dioxobacteriochlorin chromophore and exhibit an absorption spectrum somewhat similar to that of chlorophyll a. Here, hyperspectral confocal fluorescence microscopy was employed to noninvasively probe the locale of tolyporphins within live cells under various growth conditions (media, illumination, culture age). Cultures grown in nitrate-depleted media (BG-110 vs. nitrate-rich, BG-11) are known to increase the production of tolyporphins by orders of magnitude (rivaling that of chlorophyll a) over a period of 30-45 days. Multivariate curve resolution (MCR) was applied to an image set containing images from each condition to obtain pure component spectra of the endogenous pigments. The relative abundances of these components were then calculated for individual pixels in each image in the entire set, and 3D-volume renderings were obtained. At 30 days in media with or without nitrate, the chlorophyll a and phycobilisomes (combined phycocyanin and phycobilin components) co-localize in the filament outer cytoplasmic region. Tolyporphins localize in a distinct peripheral pattern in cells grown in BG-110 versus a diffuse pattern (mimicking the chlorophyll a localization) upon growth in BG-11. In BG-110, distinct puncta of tolyporphins were commonly found at the septa between cells and at the end of filaments. This work quantifies the relative abundance and envelope localization of tolyporphins in single cells, and illustrates the ability to identify novel tetrapyrroles in the presence of chlorophyll a in a photosynthetic microorganism within a non-axenic culture.


Subject(s)
Cyanobacteria/metabolism , Photosynthesis , Porphyrins/metabolism , Tetrapyrroles/metabolism , Adaptation, Physiological , Bacteriochlorophyll A/chemistry , Chlorophyll A/chemistry , Cyanobacteria/ultrastructure , Darkness , Microscopy, Confocal , Microscopy, Fluorescence , Porphyrins/chemistry , Tetrapyrroles/chemistry
7.
Soft Matter ; 14(33): 6793-6798, 2018 Aug 22.
Article in English | MEDLINE | ID: mdl-29972196

ABSTRACT

Amphiphilic Janus particles demonstrate unique assembly structures when dried on a hydrophilic substrate. Particle orientations are influenced by amphiphilicity and Janus balance. A three-stage model is developed to describe the process. Simulation further indicates the dominant force is capillary attraction due to the interface pinning at rough Janus boundaries.

8.
Biophys J ; 114(12): 2900-2909, 2018 06 19.
Article in English | MEDLINE | ID: mdl-29925026

ABSTRACT

Intracellular cargos are transported by molecular motors along actin and microtubules, but how their dynamics depends on the complex structure of the cytoskeletal network remains unclear. In this study, we investigated this longstanding question by measuring simultaneously the rotational and translational dynamics of cargos at microtubule intersections in living cells. We engineered two-faced particles that are fluorescent on one hemisphere and opaque on the other and used their optical anisotropy to report the rotation of cargos. We show that cargos undergo brief episodes of unidirectional and rapid rotation while pausing at microtubule intersections. Probability and amplitude of the cargo rotation depend on the geometry of the intersecting filaments. The cargo rotation is not random motion due to detachment from microtubules, as revealed by statistical analyses of the translational and rotational dynamics. Instead, it is an active rotation driven by motor proteins. Although cargos are known to pause at microtubule intersections, this study reveals a different dimension of dynamics at this seemingly static state and, more importantly, provides direct evidence showing the correlation between cargo rotation and the geometry of underlying microtubule intersections.


Subject(s)
Intracellular Space/metabolism , Microtubules/metabolism , Rotation , Animals , Cell Survival , Chlorocebus aethiops , Kinesins/metabolism , Movement , Vero Cells
9.
Langmuir ; 34(3): 1151-1158, 2018 01 23.
Article in English | MEDLINE | ID: mdl-28946746

ABSTRACT

Endosomes in cells are known to move directionally along microtubules, but their rotational dynamics have rarely been investigated. Even less is known, specifically, about the rotation of nonspherical endosomes. Here we report a single-Janus rod rotational tracking study to reveal the rich rotational dynamics of rod-shaped endosomes in living cells. The rotational reporters were Janus rods that display patches of different fluorescent colors on opposite sides along their long axes. When the Janus rods are wrapped tightly inside endosomes, their shape and optical anisotropy allow the simultaneous measurements of all three rotational angles (in-plane, out-of-plane, and longitudinal) and the translational motion of single endosomes with high spatiotemporal resolutions. We demonstrate that endosomes undergo in-plane rotation and rolling during intracellular transport and that such rotational dynamics are driven by rapid microtubule fluctuations. We reveal for the first time the "rock-and-roll" of endosomes in living cells and how the intracellular environment modifies such rotational dynamics. This study demonstrates a unique application of Janus particles as imaging probes in the elucidation of fundamental biological questions.


Subject(s)
Endosomes/metabolism , Animals , COS Cells , Cell Survival , Chlorocebus aethiops , Rotation , Silicon Dioxide/chemistry
10.
Appl Spectrosc ; 71(3): 507-519, 2017 Mar.
Article in English | MEDLINE | ID: mdl-27815435

ABSTRACT

Cosmic ray spikes are especially problematic for hyperspectral imaging because of the large number of spikes often present and their negative effects upon subsequent chemometric analysis. Fortunately, while the large number of spectra acquired in a hyperspectral imaging data set increases the probability and number of cosmic spikes observed, the multitude of spectra can also aid in the effective recognition and removal of the cosmic spikes. Zhang and Ben-Amotz were perhaps the first to leverage the additional spatial dimension of hyperspectral data matrices (DM). They integrated principal component analysis (PCA) into the upper bound spectrum method (UBS), resulting in a hybrid method (UBS-DM) for hyperspectral images. Here, we expand upon their use of PCA, recognizing that principal components primarily present in only a few pixels most likely correspond to cosmic spikes. Eliminating the contribution of those principal components in those pixels improves the cosmic spike removal. Both simulated and experimental hyperspectral Raman image data sets are used to test the newly developed UBS-DM-hyperspectral (UBS-DM-HS) method which extends the UBS-DM method by leveraging characteristics of hyperspectral data sets. A comparison is provided between the performance of the UBS-DM-HS method and other methods suitable for despiking hyperspectral images, evaluating both their ability to remove cosmic ray spikes and the extent to which they introduce spectral bias.

11.
Soft Matter ; 12(45): 9151-9157, 2016 Nov 16.
Article in English | MEDLINE | ID: mdl-27796398

ABSTRACT

Amphiphilic Janus particles self-assemble into complex metastructures, but little is known about how their assembly might be modified by weak interactions with a nearby biological membrane surface. Here, we report an integrated experimental and molecular dynamics simulation study to investigate the self-assembly of amphiphilic Janus particles on a lipid membrane. We created an experimental system in which Janus particles are allowed to self-assemble in the same medium where zwitterionic lipids form giant unilamellar vesicles (GUVs). Janus particles spontaneously concentrated on the inner leaflet of the GUVs. They exhibited biased orientation and heterogeneous rotational dynamics as revealed by single particle rotational tracking. The combined experimental and simulation results show that Janus particles concentrate on the lipid membranes due to weak particle-lipid attraction, whereas the biased orientation of particles is driven predominantly by inter-particle interactions. This study demonstrates the potential of using lipid membranes to influence the self-assembly of Janus particles.


Subject(s)
Lipids/chemistry , Unilamellar Liposomes/chemistry , Molecular Dynamics Simulation
12.
Soft Matter ; 11(26): 5346-52, 2015 Jul 14.
Article in English | MEDLINE | ID: mdl-26059797

ABSTRACT

We investigated the rotational dynamics of single microparticles during their internalization by macrophage cells. The microparticles used were triblock patchy particles that display two fluorescent patches on their two poles. The optical anisotropy made it possible to directly visualize and quantify the orientation and rotation of the particles. We show that particles exhibit a mixture of fast and slow rotation as they are uptaken by macrophages and transiently undergo directional rotation during their entry into the cell. The size of the particles and the surface presentation of ligands exerted a negligible influence on this heterogeneity of particle rotation.


Subject(s)
Macrophages/metabolism , Microspheres , Rotation , Animals , Biological Transport , Immunoglobulin G/metabolism , Ligands , Mice , RAW 264.7 Cells
13.
ACS Appl Mater Interfaces ; 6(21): 18435-9, 2014.
Article in English | MEDLINE | ID: mdl-25343426

ABSTRACT

Here we show that the multifunctionality of Janus particles can be exploited for in vitro T cell activation. We engineer bifunctional Janus particles on which the spatial distribution of two ligands, anti-CD3 and fibronectin, mimics the "bull's eye" protein pattern formed in the membrane junction between a T cell and an antigen-presenting cell. Different levels of T cell activation can be achieved by simply switching the spatial distribution of the two ligands on the surfaces of the "bull's eye" particles. We find that the ligand pattern also affects clustering of intracellular proteins. This study demonstrates that anisotropic particles, such as Janus particles, can be developed as artificial antigen-presenting cells for modulating T cell activation.


Subject(s)
Antigen-Presenting Cells/immunology , Artificial Cells/immunology , Biocompatible Materials/pharmacology , Lymphocyte Activation/drug effects , Models, Immunological , T-Lymphocytes/drug effects , Antigen-Presenting Cells/chemistry , Artificial Cells/chemistry , Biocompatible Materials/chemistry , Biotechnology , Calcium/analysis , Calcium/metabolism , Humans , Immunological Synapses , Intracellular Space/chemistry , Intracellular Space/metabolism , Jurkat Cells , T-Lymphocytes/chemistry , T-Lymphocytes/metabolism
14.
Langmuir ; 30(16): 4760-6, 2014 Apr 29.
Article in English | MEDLINE | ID: mdl-24734998

ABSTRACT

Particle tracking, the analysis of individual moving elements in time series of microscopic images, enables burgeoning new applications, but there is need to better resolve conformation and dynamics. Here we describe the advantages of Delaunay triangulation to extend the capabilities of particle tracking in three areas: (1) discriminating irregularly shaped objects, which allows one to track items other than point features; (2) combining time and space to better connect missing frames in trajectories; and (3) identifying shape backbone. To demonstrate the method, specific examples are given, involving analyzing the time-dependent molecular conformations of actin filaments and λ-DNA. The main limitation of this method, shared by all other clustering techniques, is the difficulty to separate objects when they are very close. This can be mitigated by inspecting locally to remove edges that are longer than their neighbors and also edges that link two objects, using methods described here, so that the combination of Delaunay triangulation with edge removal can be robustly applied to processing large data sets. As common software packages, both commercial and open source, can construct Delaunay triangulation on command, the methods described in this paper are both computationally efficient and easy to implement.

15.
J Chem Phys ; 135(5): 054905, 2011 Aug 07.
Article in English | MEDLINE | ID: mdl-21823730

ABSTRACT

We compare, using single-particle optical imaging, trajectories of rotation and translation for micron-sized spheres in index-matched colloidal suspensions near their glass transition. Rotational trajectories, while they show intermittent caged behavior associated with supercooled and glassy behavior, explore a sufficiently wider phase space such that in the averaged mean-square angular displacement there appears no plateau regime, but instead sub-Fickian angular diffusion that follows an apparent power law in time. We infer translation and rotation time constants, the former being the time to diffuse a particle diameter and the latter being the time to rotate a full revolution. Correlation between time constants increases with increasing volume fraction, but unlike the case for molecular glasses, the rotation time constant slows more weakly than the translation time.

16.
J Phys Chem B ; 115(12): 2748-53, 2011 Mar 31.
Article in English | MEDLINE | ID: mdl-21384815

ABSTRACT

Building upon the observation that liposomes of zwitterionic lipids can be stabilized against fusion by the adsorption of cationic nanoparticles (Yu, Y.; Anthony, S.; Zhang, L.; Bae, S. C.; Granick, S. J. Phys. Chem. C2007, 111, 8233), we study, using single-particle fluorescence tracking, mobility in this distinctively deformable colloid system, in the volume fraction range of φ = 0.01 to 0.7. Liposome motion is diffusive and homogeneous at low volume fractions, but separable fast and slow populations emerge as the volume fraction increases beyond φ ≈ 0.45, the same volume fraction at which hard colloids with sufficiently strong attraction are known to experience gelation. This is reflected not only in scaling of the mean square displacement, but also in the step size distribution (van Hove function) measured by fluorescence imaging. The fast liposomes are observed to follow Brownian motion, and the slow ones follow anomalous diffusion characterized by a 1/3 time scaling of their mean square displacement.


Subject(s)
Liposomes/chemistry , Adsorption , Cell Membrane/chemistry , Diffusion , Nanoparticles/chemistry , Static Electricity , Suspensions
17.
Phys Rev Lett ; 104(11): 118301, 2010 Mar 19.
Article in English | MEDLINE | ID: mdl-20366503

ABSTRACT

Using single-molecule fluorescence imaging, we track Brownian motion perpendicular to the contour of tightly entangled F-actin filaments and extract the confining potential. The chain localization presents a small-displacement Hookean regime followed by a large amplitude regime where the effective restoring force is independent of displacement. The implied heterogeneity characterized by a distribution of tube width is modeled.


Subject(s)
Actins/chemistry , Actins/ultrastructure , Models, Chemical , Models, Molecular , Computer Simulation , Dimerization
18.
Proc Natl Acad Sci U S A ; 106(36): 15160-4, 2009 Sep 08.
Article in English | MEDLINE | ID: mdl-19666495

ABSTRACT

We describe experiments using single-particle tracking in which mean-square displacement is simply proportional to time (Fickian), yet the distribution of displacement probability is not Gaussian as should be expected of a classical random walk but, instead, is decidedly exponential for large displacements, the decay length of the exponential being proportional to the square root of time. The first example is when colloidal beads diffuse along linear phospholipid bilayer tubes whose radius is the same as that of the beads. The second is when beads diffuse through entangled F-actin networks, bead radius being less than one-fifth of the actin network mesh size. We explore the relevance to dynamic heterogeneity in trajectory space, which has been extensively discussed regarding glassy systems. Data for the second system might suggest activated diffusion between pores in the entangled F-actin networks, in the same spirit as activated diffusion and exponential tails observed in glassy systems. But the first system shows exceptionally rapid diffusion, nearly as rapid as for identical colloids in free suspension, yet still displaying an exponential probability distribution as in the second system. Thus, although the exponential tail is reminiscent of glassy systems, in fact, these dynamics are exceptionally rapid. We also compare with particle trajectories that are at first subdiffusive but Fickian at the longest measurement times, finding that displacement probability distributions fall onto the same master curve in both regimes. The need is emphasized for experiments, theory, and computer simulation to allow definitive interpretation of this simple and clean exponential probability distribution.


Subject(s)
Actins/chemistry , Colloids/chemistry , Lipid Bilayers/chemistry , Models, Chemical , Diffusion , Microspheres , Probability , Time Factors
19.
Phys Rev Lett ; 102(17): 178303, 2009 May 01.
Article in English | MEDLINE | ID: mdl-19518842

ABSTRACT

We investigate, from single-particle tracking of jumps, the cluster configurations that allow hopping over a geometric activation barrier in surface diffusion. Spherical colloidal particles, their dimers, and their isomeric planar trimers are compared on hexagonal surface lattices commensurate with the elemental size of one particle. The experiments reveal that translational and rotational mobility depend on the shape of these clusters, not only on their mass, because the jump process favors a restricted family of cluster configurations. The resulting strong decoupling between rotation and translation demonstrates the limitations of a naïve Arrhenius picture, even for a simple gravitational potential.

20.
Langmuir ; 25(14): 8152-60, 2009 Jul 21.
Article in English | MEDLINE | ID: mdl-19419178

ABSTRACT

A computationally rapid image analysis method, weighted overdetermined regression, is presented for two-dimensional (2D) Gaussian fitting of particle location with subpixel resolution from a pixelized image of light intensity. Compared to least-squares Gaussian iterative fitting, which is most exact but prohibitively slow for large data sets, the precision of this new method is equivalent when the signal-to-noise ratio is high and approaches it when the signal-to-noise ratio is low, while enjoying a more than 100-fold improvement in computational time. Compared to another widely used approximation method, nine-point regression, we show that precision and speed are both improved. Additionally, weighted regression runs nearly as fast and with greatly improved precision compared to the simplest method, the moment method, which, despite its limited precision, is frequently employed because of its speed. Quantitative comparisons are presented for both circular and elliptical Gaussian intensity distributions. This new image analysis method may be useful when dealing with large data sets such as those frequently met in astronomy or in single-particle and single-molecule tracking using microscopy and may facilitate advances such as real-time quantification of microscopy images.

SELECTION OF CITATIONS
SEARCH DETAIL