Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Lab Anim Res ; 40(1): 9, 2024 Mar 11.
Article in English | MEDLINE | ID: mdl-38468315

ABSTRACT

BACKGROUND: Alzheimer's disease (AD), the most common form of progressive dementia in the elderly, is a chronic neurological disorder that decreases cognitive ability. Although the underlying cause of AD is yet unknown, oxidative stress and brain acetylcholine shortage are the key pathogenic causes. RESULTS: The current study shows that these derivatives have the potential to improve memory in mice by inhibiting scopolamine-induced acetylcholinesterase activity, oxidative and nitrosative stress, and improving locomotor activity and muscle grip strength in the rota rod test. When compared to the illness control, the memory-enhancing potential of novel N-benzyl pyridine-2-one derivatives was highly significant (P < 0.0001). CONCLUSIONS: The observed memory ameliorating effect of novel N-benzyl pyridine-2-one makes them as a a good choice for treatment of individuals with cognitive impairment.

2.
ACS Chem Neurosci ; 15(4): 783-797, 2024 02 21.
Article in English | MEDLINE | ID: mdl-38320262

ABSTRACT

The most frequent type of age-related dementia is Alzheimer's disease. To discover novel therapeutic agents for Alzheimer's disease, a series of substituted pyrimidine derivatives were synthesized and evaluated for anti-Alzheimer's activity. All the synthesized compounds were validated by 1HNMR, 13CNMR, and HRMS to assess the structural conformance of the newly synthesized compounds. The synthesized compounds were then evaluated for their in vivo acute toxicity study. Evaluation of acute toxicity showed that none of the synthesized compounds showed toxicity up to 1000 mg/kg. After in vivo acute toxicity studies, the compounds were subjected to behavioral and biochemical studies. Compound N4-(4-chlorophenyl)-N2-(2-(piperidin-1-yl)ethyl)pyrimidine-2,4-diamine 5b (SP-2) displayed an excellent anti-Alzheimer's profile, while the rest of the compounds showed satisfactory results in comparison to donepezil. Docking studies confirmed the results obtained through in vivo experiments and showed that 5b (SP-2) showed a similar interaction to that of donepezil. Further, in silico molecular property predictions showed that 5b (SP-2) possesses favorable drug-likeness and ADME properties for CNS activity. These results implied that 5b could serve as an appropriate lead molecule for the development of anti-Alzheimer's agent.


Subject(s)
Alzheimer Disease , Humans , Donepezil/pharmacology , Donepezil/therapeutic use , Molecular Docking Simulation , Alzheimer Disease/drug therapy , Cholinesterase Inhibitors/pharmacology , Acetylcholinesterase/metabolism , Pyrimidines/pharmacology , Pyrimidines/therapeutic use , Structure-Activity Relationship
3.
Pharmacol Biochem Behav ; 229: 173602, 2023 08.
Article in English | MEDLINE | ID: mdl-37453560

ABSTRACT

Alzheimer's disease (AD) is a long-term neurodegenerative condition that impairs cognitive abilities. In brain acetylcholine deficit and oxidative stress may be considered the key pathogenic causes for AD, even though the basic etiology is still unknown. The effects of some novel pyrrolidine-2-one derivatives on the learning and memory deficits caused by scopolamine in mice were examined in the current study. The learning and memory parameters were assessed using the morris water maze test, rota rod test the and locomotor activity. A number of biochemical factors were also evaluated, including acetylcholinesterase (AChE), lipid peroxidation (LPO), reduced glutathione (GSH), superoxide dismutase (SOD), catalase (CA), and nitrite oxide (NO) assay. The current study shows that these derivatives were more effective and comparable to donepezil at treating the behavioral and biochemical changes brought on by scopolamine. The observed results showed pyrrolidine-2-one derivatives as a promising candidate for diseases associated with cognitive deficits.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Neuroprotective Agents , Mice , Animals , Scopolamine/pharmacology , Neuroprotective Agents/pharmacology , Acetylcholinesterase/metabolism , Cognitive Dysfunction/chemically induced , Cognitive Dysfunction/drug therapy , Memory Disorders , Oxidative Stress , Pyrrolidines/pharmacology , Maze Learning
4.
Pharm Chem J ; 57(2): 196-203, 2023.
Article in English | MEDLINE | ID: mdl-37313436

ABSTRACT

1H-indol-2,3-dione (isatin) class of biologically active compounds have analgesic, anti-microbial, anti-inflammatory, anti-tubercular, anti-proliferative properties, and is also useful for the treatment of SARS-CoV. Schiff bases containing isatin moiety are known to have broad spectrum of biological activities like anti-viral, anti-tubercular, anti-fungal, and anti-bacterial. In this work, several Schiff base derivatives have been synthesized using two methods (synthetic and microwave) by reacting isatin with o-phenylenediamine. The synthesized compounds were structurally characterized and their in-vivo antimicrobial activity was tested against Gram-negative and Gram-positive bacteria using the inhibition zone method. Several newly synthesized isatin derivatives were found effective as antimicrobial agents and showed good potency (compounds 3c, 3d, 6a, 6b, 6d). Compound 3c displayed higher antimicrobial activity than standard drug (Amoxicillin) against Staphylococcus aureus at higher concentration (16 µg/mL) and against Escherichia coli at lower concentration (1 µg/mL).

5.
Front Chem ; 9: 671212, 2021.
Article in English | MEDLINE | ID: mdl-35127639

ABSTRACT

A wide range of biological activities is exhibited by 1,3,4-thiadiazole moiety such as antidiabetic, anticancer, anti-inflammatory, anticonvulsant, antiviral, antihypertensive, and antimicrobial. To date, drugs such as butazolamide, and acetazolamide. Several modifications have been done in the 1,3,4-thiadiazole moiety which showed good potency as anticonvulsant agents which are highly effective and have less toxicity. After in-depth literature survey in this review, we have compiled various derivatives of 1,3,4-thiadiazole scaffold as anticonvulsant agents.

SELECTION OF CITATIONS
SEARCH DETAIL
...