Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Spectrochim Acta A Mol Biomol Spectrosc ; 148: 223-31, 2015 Sep 05.
Article in English | MEDLINE | ID: mdl-25897715

ABSTRACT

The synthesis and characterization of four new ß-ketiminate hafnium(IV) chloride complexes dichloro-bis[4-(phenylamido)pent-3-en-2-one]-hafnium (4a), dichloro-bis[4-(4-methylphenylamido)pent-3-en-2-one]-hafnium (4b), dichloro-bis[4-(4-methoxyphenylamido)pent-3-en-2-one]-hafnium (4c), and dichloro-bis[4-(4-chlorophenylamido)pent-3-en-2-one]-hafnium (4d) are reported. All the complexes (4a-d) were characterized by spectroscopic methods ((1)H NMR, (13)C NMR, IR), and elemental analysis while the compound 4c was further examined by single-crystal X-ray diffraction, revealing that the complex is monomer with the hafnium center in octahedral coordination environment and oxygens of the chelating N-O ligands are trans to each other and the chloride ligands are in a cis arrangement. Volatile trends are established for four new ß-ketiminate hafnium(IV) chloride complexes (4a-d). Sublimation enthalpies (ΔHsub) were calculated from thermogravimetric analysis (TGA) data, which show that, the dependence of ΔHsub on the molecular weight (4a-c) and inductive effects from chlorine (4d).

2.
J Am Chem Soc ; 132(36): 12556-8, 2010 Sep 15.
Article in English | MEDLINE | ID: mdl-20731378

ABSTRACT

Herein, we report the electrochemical Li intake capacity of carbonaceous one-dimensional graphene nanoribbons (GNRs) obtained by unzipping pristine multiwalled carbon nanotubes (MWCNTs). We have found that nanotubes with diameters of approximately 50 nm present a smaller reversible capacity than conventional mesocarbon microbead (MCMB) powder. Reduced GNRs improve the capacity only marginally over the MCMB reference but present a lower Coulombic efficiency as well as a higher capacity loss per cycle. Oxidized GNRs (ox-GNRs) outperform all of the other materials studied here in terms of energy density. They present a first charge capacity of approximately 1400 mA h g(-1) with a low Coulombic efficiency for the first cycle (approximately 53%). The reversible capacity of ox-GNRs is in the range of 800 mA h g(-1), with a capacity loss per cycle of approximately 3% for early cycles and a decreasing loss rate for subsequent cycles.


Subject(s)
Graphite/chemistry , Lithium/chemistry , Nanotubes, Carbon/chemistry , Electrochemistry , Particle Size
SELECTION OF CITATIONS
SEARCH DETAIL
...