Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
IET Syst Biol ; 9(5): 204-15, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26405144

ABSTRACT

The authors developed a mathematical model of arachidonic acid (AA) degradation to prostaglandins (PGs) and leukotrienes (LTs), which are implicated in the processes of inflammation and hypersensitivity to non-steroidal anti-inflammatory drugs (NSAIDs). The model focuses on two PGs (PGE2 and PGD2) and one LT (LTC4), their % increases and their ratios. Results are compared with experimental studies obtained from non-asthmatics (NAs), and asthmatics tolerant (ATA) or intolerant (AIA) to aspirin. Simulations are carried out for predefined model populations NA, ATA and three AIA, based on the differences of two enzymes, PG E synthase and/or LTC4-synthase in two states, that is, no-inflammation and inflammation. Their model reveals that the model population with concomitant malfunctions in both enzymes is the most sensitive to NSAIDs, since the duration and the capacity for bronchoconstriction risk are highest after simulated oral dosing of indomethacin. Furthermore, inflammation prolongs the duration of the bronchoconstriction risk in all AIA model populations, and the sensitivity analysis reveals multiple possible scenarios leading to hypersensitivity, especially if inflammatory processes affect the expression of multiple enzymes of the AA metabolic pathway. Their model estimates the expected fold-changes in enzyme activities and gives valuable information for further targeted transcriptomic/proteomic and metabolomic studies.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal/adverse effects , Drug Hypersensitivity/metabolism , Eicosanoids/metabolism , Models, Immunological , Computational Biology , Computer Simulation , Humans , Kinetics
2.
Microbiol Res ; 158(4): 353-7, 2003.
Article in English | MEDLINE | ID: mdl-14717457

ABSTRACT

The aim of this study was to investigate antimicrobial properties of ethanolic extract of 13 propolis (EEP) samples from different regions of Serbia against 39 microorganisms (14 resistant or multiresistant to antibiotics), and to determine synergistic activity between antimicrobials and propolis. Antimicrobial activity of propolis samples was evaluated by agar diffusion and agar dilution method. The synergistic action of propolis with antimicrobial drugs was assayed by the disc diffusion method on agar containing subinhibitory concentrations of propolis. Obtained results indicate that EEP, irrespectively of microbial resistance to antibiotics, showed significant antimicrobial activities against Gram-positive bacteria (MIC 0.078%-1.25% of EEP) and yeasts (0.16%-1.25%), while Gram-negative bacteria were less susceptible (1.25%-->5%). Enterococcus faecalis was the most resistant Gram-positive bacterium, Salmonella spp. the most resistant Gram-negative bacteria, and Candida albicans the most resistant yeast. EEP showed synergism with selected antibiotics, and displayed ability to enhance the activities of antifungals. The shown antimicrobial potential of propolis alone or in combination with certain antibiotics and antifungals is of potential medical interest.


Subject(s)
Anti-Bacterial Agents/pharmacology , Anti-Infective Agents/pharmacology , Candida/drug effects , Gram-Negative Bacteria/drug effects , Gram-Positive Bacteria/drug effects , Propolis/pharmacology , Drug Resistance, Bacterial , Drug Synergism , Humans , Microbial Sensitivity Tests
SELECTION OF CITATIONS
SEARCH DETAIL
...