Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 13(1): 3517, 2023 03 02.
Article in English | MEDLINE | ID: mdl-36864069

ABSTRACT

With over 17 million annual deaths, cardiovascular diseases (CVDs) dominate the cause of death statistics. CVDs can deteriorate the quality of life drastically and even cause sudden death, all the while inducing massive healthcare costs. This work studied state-of-the-art deep learning techniques to predict increased risk of death in CVD patients, building on the electronic health records (EHR) of over 23,000 cardiac patients. Taking into account the usefulness of the prediction for chronic disease patients, a prediction period of six months was selected. Two major transformer models that rely on learning bidirectional dependencies in sequential data, BERT and XLNet, were trained and compared. To our knowledge, the presented work is the first to apply XLNet on EHR data to predict mortality. The patient histories were formulated as time series consisting of varying types of clinical events, thus enabling the model to learn increasingly complex temporal dependencies. BERT and XLNet achieved an average area under the receiver operating characteristic curve (AUC) of 75.5% and 76.0%, respectively. XLNet surpassed BERT in recall by 9.8%, suggesting that it captures more positive cases than BERT, which is the main focus of recent research on EHRs and transformers.


Subject(s)
Cardiovascular Diseases , Electronic Health Records , Humans , Quality of Life , Death, Sudden , Electric Power Supplies
2.
Front Physiol ; 13: 968185, 2022.
Article in English | MEDLINE | ID: mdl-36452041

ABSTRACT

Problems with fatigue and sleep are highly prevalent in patients with chronic diseases and often rated among the most disabling symptoms, impairing their activities of daily living and the health-related quality of life (HRQoL). Currently, they are evaluated primarily via Patient Reported Outcomes (PROs), which can suffer from recall biases and have limited sensitivity to temporal variations. Objective measurements from wearable sensors allow to reliably quantify disease state, changes in the HRQoL, and evaluate therapeutic outcomes. This work investigates the feasibility of capturing continuous physiological signals from an electrocardiography-based wearable device for remote monitoring of fatigue and sleep and quantifies the relationship of objective digital measures to self-reported fatigue and sleep disturbances. 136 individuals were followed for a total of 1,297 recording days in a longitudinal multi-site study conducted in free-living settings and registered with the German Clinical Trial Registry (DRKS00021693). Participants comprised healthy individuals (N = 39) and patients with neurodegenerative disorders (NDD, N = 31) and immune mediated inflammatory diseases (IMID, N = 66). Objective physiological measures correlated with fatigue and sleep PROs, while demonstrating reasonable signal quality. Furthermore, analysis of heart rate recovery estimated during activities of daily living showed significant differences between healthy and patient groups. This work underscores the promise and sensitivity of novel digital measures from multimodal sensor time-series to differentiate chronic patients from healthy individuals and monitor their HRQoL. The presented work provides clinicians with realistic insights of continuous at home patient monitoring and its practical value in quantitative assessment of fatigue and sleep, an area of unmet need.

3.
Annu Int Conf IEEE Eng Med Biol Soc ; 2021: 2773-2777, 2021 11.
Article in English | MEDLINE | ID: mdl-34891824

ABSTRACT

Millions of people around the world suffer from Parkinson's disease, a neurodegenerative disorder with no remedy. Currently, the best response to interventions is achieved when the disease is diagnosed at an early stage. Supervised machine learning models are a common approach to assist early diagnosis from clinical data, but their performance is highly dependent on available example data and selected input features. In this study, we explore 23 single photon emission computed tomography (SPECT) image features for the early diagnosis of Parkinson's disease on 646 subjects. We achieve 94 % balanced classification accuracy in independent test data using the full feature space and show that matching accuracy can be achieved with only eight features, including original features introduced in this study. All the presented features can be generated using a routinely available clinical software and are therefore straightforward to extract and apply.


Subject(s)
Parkinson Disease , Early Diagnosis , Humans , Machine Learning , Parkinson Disease/diagnostic imaging , Tomography, Emission-Computed, Single-Photon
SELECTION OF CITATIONS
SEARCH DETAIL
...