Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 14(1): 8284, 2023 Dec 13.
Article in English | MEDLINE | ID: mdl-38092726

ABSTRACT

Electrocatalysts are the cornerstone in the transition to sustainable energy technologies and chemical processes. Surface transformations under operation conditions dictate the activity and stability. However, the dependence of the surface structure and transformation on the exposed crystallographic facet remains elusive, impeding rational catalyst design. We investigate the (001), (110) and (111) facets of a LaNiO3-δ electrocatalyst for water oxidation using electrochemical measurements, X-ray spectroscopy, and density functional theory calculations with a Hubbard U term. We reveal that the (111) overpotential is ≈ 30-60 mV lower than for the other facets. While a surface transformation into oxyhydroxide-like NiOO(H) may occur for all three orientations, it is more pronounced for (111). A structural mismatch of the transformed layer with the underlying perovskite for (001) and (110) influences the ratio of Ni2+ and Ni3+ to Ni4+ sites during the reaction and thereby the binding energy of reaction intermediates, resulting in the distinct catalytic activities of the transformed facets.

2.
Nat Commun ; 14(1): 7688, 2023 Nov 24.
Article in English | MEDLINE | ID: mdl-38001061

ABSTRACT

Fe-containing transition-metal (oxy)hydroxides are highly active oxygen-evolution reaction (OER) electrocatalysts in alkaline media and ubiquitously form across many materials systems. The complexity and dynamics of the Fe sites within the (oxy)hydroxide have slowed understanding of how and where the Fe-based active sites form-information critical for designing catalysts and electrolytes with higher activity and stability. We show that where/how Fe species in the electrolyte incorporate into host Ni or Co (oxy)hydroxides depends on the electrochemical history and structural properties of the host material. Substantially less Fe is incorporated from Fe-spiked electrolyte into Ni (oxy)hydroxide at anodic potentials, past the nominally Ni2+/3+ redox wave, compared to during potential cycling. The Fe adsorbed under constant anodic potentials leads to impressively high per-Fe OER turn-over frequency (TOFFe) of ~40 s-1 at 350 mV overpotential which we attribute to under-coordinated "surface" Fe. By systematically controlling the concentration of surface Fe, we find TOFFe increases linearly with the Fe concentration. This suggests a changing OER mechanism with increased Fe concentration, consistent with a mechanism involving cooperative Fe sites in FeOx clusters.

3.
Angew Chem Int Ed Engl ; 61(50): e202211949, 2022 Dec 12.
Article in English | MEDLINE | ID: mdl-36129132

ABSTRACT

Implementation of chemical energy storage for a sustainable energy supply requires the rational improvement of electrocatalyst materials, for which their nature under reaction conditions needs to be revealed. For a better understanding of earth-abundant metal oxides as electrocatalysts for the oxygen evolution reaction (OER), the combination of electrochemical (EC) methods and X-ray absorption spectroscopy (XAS) is very insightful, yet still holds untapped potential. Herein, we concisely introduce EC and XAS, providing the necessary framework to discuss changes that electrocatalytic materials undergo during preparation and storage, during immersion in an electrolyte, as well as during application of potentials, showing Mn oxides as examples. We conclude with a summary of how EC and XAS are currently combined to elucidate active states, as well as an outlook on opportunities to understand the mechanisms of electrocatalysis using combined operando EC-XAS experiments.

4.
ChemElectroChem ; 9(13): e202200482, 2022 Jul 14.
Article in English | MEDLINE | ID: mdl-35915742

ABSTRACT

Improving the stability of electrocatalysts for the oxygen evolution reaction (OER) through materials design has received less attention than improving their catalytic activity. We explored the effects of Mn addition to a cobalt oxide for stabilizing the catalyst by comparing single phase CoOx and (Co0.7Mn0.3)Ox films electrodeposited in alkaline solution. The obtained disordered films were classified as layered oxides using X-ray absorption spectroscopy (XAS). The CoOx films showed a constant decrease in the catalytic activity during cycling, confirmed by oxygen detection, while that of (Co0.7Mn0.3)Ox remained constant within error as measured by electrochemical metrics. These trends were rationalized based on XAS analysis of the metal oxidation states, which were Co2.7+ and Mn3.7+ in the bulk and similar near the surface of (Co0.7Mn0.3)Ox, before and after cycling. Thus, Mn in (Co0.7Mn0.3)Ox successfully stabilized the bulk catalyst material and its surface activity during OER cycling. The development of stabilization approaches is essential to extend the durability of OER catalysts.

SELECTION OF CITATIONS
SEARCH DETAIL
...