Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev Lett ; 117(14): 146601, 2016 Sep 30.
Article in English | MEDLINE | ID: mdl-27740798

ABSTRACT

Disorder or sufficiently strong interactions can render a metallic state unstable, causing it to turn into an insulating one. Despite the fact that the interplay of these two routes to a vanishing conductivity has been a central research topic, a unifying picture has not emerged so far. Here, we establish that the two-dimensional Falicov-Kimball model, one of the simplest lattice models of strong electron correlation, does allow for the study of this interplay. In particular, we show that this model at particle-hole symmetry possesses three distinct thermodynamic insulating phases and exhibits Anderson localization. The previously reported metallic phase is identified as a finite-size feature due to the presence of weak localization. We characterize these phases by their electronic density of states, staggered occupation, conductivity, and the generalized inverse participation ratio. The implications of our findings for other strongly correlated systems are discussed.

2.
Phys Rev Lett ; 116(3): 036801, 2016 Jan 22.
Article in English | MEDLINE | ID: mdl-26849606

ABSTRACT

We examine the dynamics of a correlated quantum dot in the mixed valence regime. We perform numerically exact calculations of the current after a quantum quench from equilibrium by rapidly applying a bias voltage in a wide range of initial temperatures. The current exhibits short equilibration times and saturates upon the decrease of temperature at all times, indicating Kondo behavior both in the transient regime and in the steady state. The time-dependent current saturation temperature connects the equilibrium Kondo temperature to a substantially increased value at voltages outside of the linear response. These signatures are directly observable by experiments in the time domain.

3.
Sci Rep ; 5: 8005, 2015 Jan 27.
Article in English | MEDLINE | ID: mdl-25623327

ABSTRACT

Metastable quantum dynamics of an asymmetric triangular cluster that is coupled to a reservoir is investigated. The dynamics is governed by bath-mediated transitions, which in part require a thermal activation process. The decay rate is controlled by tuning the excitation spectrum of the frustrated cluster. We use the master equation approach and construct transition operators in terms of many-body states. We analyze dynamics of observables and reveal metastability of an excited state and of a magnetically polarized ground state.

4.
Phys Rev Lett ; 112(22): 226401, 2014 Jun 06.
Article in English | MEDLINE | ID: mdl-24949779

ABSTRACT

Self-consistent dynamical approximations for strongly correlated fermion systems are particularly successful in capturing the dynamical competition of local correlations. In these, the effect of spatially extended degrees of freedom is usually only taken into account in a mean field fashion or as a secondary effect. As a result, critical exponents associated with phase transitions have a mean field character. Here we demonstrate that diagrammatic multiscale methods anchored around local approximations are indeed capable of capturing the non-mean-field nature of the critical point of the lattice model encoded in a nonvanishing anomalous dimension and of correctly describing the transition to mean-field-like behavior as the number of spatial dimensions increases.

SELECTION OF CITATIONS
SEARCH DETAIL
...