Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Med Imaging (Bellingham) ; 9(3): 031504, 2022 May.
Article in English | MEDLINE | ID: mdl-35127969

ABSTRACT

Purpose: Tomography using diffracted x-rays produces reconstructions mapping quantities such as crystal lattice parameter(s), crystallite size, and crystallographic texture, information quite different from that obtained with absorption or phase contrast. Diffraction tomography is used to map an entire blue shark centrum with its double cone structure (corpora calcerea) and intermedialia (four wedges). Approach: Energy dispersive diffraction (EDD) and polychromatic synchrotron x-radiation at 6-BM-B, the Advanced Photon Source, were used. Different, properly oriented Bragg planes diffract different x-ray energies; these intensities are measured by one of ten energy-sensitive detectors. A pencil beam defines the irradiated volume, and a collimator before each energy-sensitive detector selects which portion of the irradiated column is sampled at any one time. Translating the specimen along X , Y , and Z axes produces a 3D map. Results: We report 3D maps of the integrated intensity of several bioapatite reflections from the mineralized cartilage centrum of a blue shark. The c axis reflection's integrated intensities and those of a reflection with no c axis component reveal that the cone wall's bioapatite is oriented with its c axes lateral, i.e., perpendicular to the backbone's axis, and that the wedges' bioapatite is oriented with its c axes axial. Absorption microcomputed tomography (laboratory and synchrotron) and x-ray excited x-ray fluorescence maps provide higher resolution views. Conclusion: The bioapatite in the cone walls and wedges is oriented to resist lateral and axial deflections, respectively. Mineralized tissue samples can be mapped in 3D with EDD tomography and subsequently studied by destructive methods.

2.
ACS Nano ; 15(3): 5201-5208, 2021 03 23.
Article in English | MEDLINE | ID: mdl-33625219

ABSTRACT

While offering high-precision control of neural circuits, optogenetics is hampered by the necessity to implant fiber-optic waveguides in order to deliver photons to genetically engineered light-gated neurons in the brain. Unlike laser light, X-rays freely pass biological barriers. Here we show that radioluminescent Gd2(WO4)3:Eu nanoparticles, which absorb external X-rays energy and then downconvert it into optical photons with wavelengths of ∼610 nm, can be used for the transcranial stimulation of cortical neurons expressing red-shifted, ∼590-630 nm, channelrhodopsin ReaChR, thereby promoting optogenetic neural control to the practical implementation of minimally invasive wireless deep brain stimulation.


Subject(s)
Nanoparticles , Optogenetics , Light , Neurons , Photons
3.
STAR Protoc ; 2(1): 100247, 2021 03 19.
Article in English | MEDLINE | ID: mdl-33437967

ABSTRACT

X-ray fluorescence microscopy (XFM) is a powerful tool for mapping and quantifying the spatial distribution of elemental composition of biological samples. Recently, it was reported that transition metal fluctuations occur during Drosophila reproduction, analogous to what is seen in mammals and nematodes, and may contribute to Drosophila female fertility. To further support XFM studies on Drosophila reproduction, we describe procedures for isolating oocytes and activated eggs and examining their elemental composition by XFM scanning and analysis. For complete details on the use and execution of this protocol, please refer to Hu et al. (2020).


Subject(s)
Oocytes/cytology , Oocytes/metabolism , Spectrometry, X-Ray Emission , Zygote/cytology , Zygote/metabolism , Animals , Drosophila melanogaster , Microscopy, Fluorescence
4.
iScience ; 23(7): 101275, 2020 Jul 24.
Article in English | MEDLINE | ID: mdl-32615472

ABSTRACT

Temporal fluctuations in zinc concentration are essential signals, including during oogenesis and early embryogenesis. In mammals, zinc accumulation and release are required for oocyte maturation and egg activation, respectively. Here, we demonstrate that zinc flux occurs in Drosophila oocytes and activated eggs, and that zinc is required for female fertility. Our synchrotron-based X-ray fluorescence microscopy reveals zinc as the most abundant transition metal in Drosophila oocytes. Its levels increase during oocyte maturation, accompanied by the appearance of zinc-enriched intracellular granules in the oocyte, which depend on transporters. Subsequently, in egg activation, which mediates the transition from oocyte to embryo, oocyte zinc levels decrease significantly, as does the number of zinc-enriched granules. This pattern of zinc dynamics in Drosophila oocytes follows a similar trajectory to that in mammals, extending the parallels in female gamete processes between Drosophila and mammals and establishing Drosophila as a model for dissecting reproductive roles of zinc.

SELECTION OF CITATIONS
SEARCH DETAIL
...