Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 106
Filter
8.
Mol Med ; 26(1): 16, 2020 02 03.
Article in English | MEDLINE | ID: mdl-32013888

ABSTRACT

The Editors-in-Chief would like to alert readers that this article (Sitapara et al. 2014) is part of an investigation being conducted by the journal following the conclusions of an institutional enquiry at the University of Liverpool with respect to the quantitative mass spectrometry-generated results regarding acetylated and redox-modified HMGB1.

17.
Toxicol Res (Camb) ; 7(3): 347-357, 2018 May 08.
Article in English | MEDLINE | ID: mdl-30090586

ABSTRACT

After over 60 years of therapeutic use in the UK, paracetamol (acetaminophen, N-acetyl-p-aminophenol, APAP) remains the subject of considerable research into both its mode of action and toxicity. The pharmacological properties of APAP are the focus of some activity, with the role of the metabolite N-arachidonoylaminophenol (AM404) still a topic of debate. However, that the hepatotoxicity of APAP results from the production of the reactive metabolite N-acetyl-p-benzoquinoneimine (NAPQI/NABQI) that can deplete glutathione, react with cellular macromolecules, and initiate cell death, is now beyond dispute. The disruption of cellular pathways that results from the production of NAPQI provides a source of potential biomarkers of the severity of the damage. Research in this area has provided new diagnostic markers such as the microRNA miR-122 as well as mechanistic biomarkers associated with apoptosis, mitochondrial dysfunction, inflammation and tissue regeneration. Additionally, biomarkers of, and systems biology models for, glutathione depletion have been developed. Furthermore, there have been significant advances in determining the role of both the innate immune system and genetic factors that might predispose individuals to APAP-mediated toxicity. This perspective highlights some of the progress in current APAP-related research.

18.
Hepatology ; 68(6): 2380-2404, 2018 12.
Article in English | MEDLINE | ID: mdl-29774570

ABSTRACT

High-mobility group box-1 (HMGB1) is a damage-associated molecular pattern (DAMP) increased in response to liver injury. Because HMGB1 is a ligand for the receptor for advanced glycation endproducts (RAGE), we hypothesized that induction of HMGB1 could participate in the pathogenesis of liver fibrosis though RAGE cell-specific signaling mechanisms. Liver HMGB1 protein expression correlated with fibrosis stage in patients with chronic hepatitis C virus (HCV) infection, primary biliary cirrhosis (PBC), or alcoholic steatohepatitis (ASH). Hepatic HMGB1 protein expression and secretion increased in five mouse models of liver fibrosis attributed to drug-induced liver injury (DILI), cholestasis, ASH, or nonalcoholic steatohepatitis (NASH). HMGB1 was up-regulated and secreted mostly by hepatocytes and Kupffer cells (KCs) following CCl4 treatment. Neutralization of HMGB1 protected, whereas injection of recombinant HMGB1 promoted liver fibrosis. Hmgb1 ablation in hepatocytes (Hmgb1ΔHep ) or in myeloid cells (Hmgb1ΔMye ) partially protected, whereas ablation in both (Hmgb1ΔHepΔMye ) prevented liver fibrosis in vivo. Coculture with hepatocytes or KCs from CCl4 -injected wild-type (WT) mice up-regulated Collagen type I production by hepatic stellate cells (HSCs); yet, coculture with hepatocytes from CCl4 -injected Hmgb1ΔHep or with KCs from CCl4 -injected Hmgb1ΔMye mice partially blunted this effect. Rage ablation in HSCs (RageΔHSC ) and RAGE neutralization prevented liver fibrosis. Last, we identified that HMGB1 stimulated HSC migration and signaled through RAGE to up-regulate Collagen type I expression by activating the phosphorylated mitogen-activated protein kinase kinase (pMEK)1/2, phosphorylated extracellular signal-regulated kinase (pERK)1/2 and pcJun signaling pathway. Conclusion: Hepatocyte and KC-derived HMGB1 participates in the pathogenesis of liver fibrosis by signaling through RAGE in HSCs to activate the pMEK1/2, pERK1/2 and pcJun pathway and increase Collagen type I deposition.


Subject(s)
Collagen Type I/metabolism , HMGB1 Protein/metabolism , Hepatic Stellate Cells/metabolism , Liver Cirrhosis/etiology , Receptor for Advanced Glycation End Products/metabolism , Animals , Carbon Tetrachloride Poisoning/metabolism , Case-Control Studies , Hepatocytes/metabolism , Humans , Kupffer Cells/metabolism , Liver Cirrhosis/metabolism , MAP Kinase Signaling System , Mice , Myeloid Cells/metabolism
19.
J Hepatol ; 2018 May 03.
Article in English | MEDLINE | ID: mdl-29729369

ABSTRACT

The publisher regrets that this article has been temporarily removed. A replacement will appear as soon as possible in which the reason for the removal of the article will be specified, or the article will be reinstated. The full Elsevier Policy on Article Withdrawal can be found at https://www.elsevier.com/about/our-business/policies/article-withdrawal.

20.
BMJ Open ; 8(4): e020061, 2018 04 27.
Article in English | MEDLINE | ID: mdl-29703854

ABSTRACT

OBJECTIVE: To obtain pilot data to evaluate the discriminatory power of biomarkers microRNA-122 (miR-122), high-mobility group box 1 (HMGB1), full-length keratin-18 (flk-18) and caspase-cleaved keratin-18 (cck-18) in plasma to identify potential biliary complications that may require acute intervention. DESIGN: An observational biomarker cohort pilot study. SETTING: In a Scottish University teaching hospital for 12 months beginning on 3 September 2014. PARTICIPANTS: Blood samples were collected from adults (≥16 years old) referred with acute biliary-type symptoms who have presented to hospital within 24 hours prior were recruited. Patients unable or refused to give informed consent or were transferred from a hospital outside the National Health Service regional trust were excluded. PRIMARY OUTCOME MEASURES: To evaluate whether circulating miR-122, HMGB1, flk-18 and cck-18 can discriminate between people with and without gallstone disease and uncomplicated from complicated gallstone disease during the first 24 hours of hospital admission. RESULTS: 300 patients were screened of which 285 patients were included. Plasma miR-122, cck-18 and flk-18 concentrations were increased in patients with gallstones compared with those without (miR-122: median: 2.89×104 copies/mL vs 0.90×104 copies/mL (p<0.001); cck-18: 121.2 U/L vs 103.5 U/L (p=0.031); flk-18: 252.4 U/L vs 145.1 U/L (p<0.001)). Uncomplicated gallstone disease was associated with higher miR-122 and cck-18 concentrations than complicated disease (miR-122: 5.72×104 copies/mL vs 2.26×104 copies/mL (p=0.023); cck-18: 139.7 U/L vs 113.6 U/L (p=0.047)). There was no significant difference in HMGB1 concentration between patients with and without gallstones (p=0.559). Separation between groups for all biomarkers was modest. CONCLUSION: miR-122 and keratin-18 plasma concentrations are elevated in patients with gallstones. However, this result is confounded by the association between biomarker concentrations, age and gender. In this pilot study, miR-122 and keratin-18 were not sufficiently discriminatory to be progressed as clinically useful biomarkers in this context.


Subject(s)
Biomarkers , Gallstones , Adolescent , Adult , Biomarkers/blood , Cohort Studies , Female , Gallstones/blood , Gallstones/diagnosis , HMGB1 Protein/blood , Humans , Keratin-18/blood , Male , MicroRNAs/blood , Pilot Projects , Quality of Life
SELECTION OF CITATIONS
SEARCH DETAIL
...