Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Addict Biol ; 26(4): e13002, 2021 07.
Article in English | MEDLINE | ID: mdl-33511744

ABSTRACT

Binge drinking during adolescence induces memory impairments, and evidences suggest that females are more vulnerable than males. However, the reason for such a difference is unclear, whereas preclinical studies addressing this question are lacking. Here we tested the hypothesis that endogenous estrogen level (E2) may explain sex differences in the effects of ethanol on hippocampus plasticity, the cellular mechanism of memory. Long-term depression (LTD) in hippocampus slice of pubertal female rats was recorded 24 h after two ethanol binges (3 g/kg, i.p., 9 h apart). Neither the estrous cycle nor ethanol altered LTD. However, if ethanol was administered during proestrus (i.e., at endogenous E2 peak), LTD was abolished 24 h later, whereas NMDA-fEPSPs response to a GluN2B antagonist increased. The abolition of LTD was not observed in adult female rats. Exogenous E2 combined with ethanol replicated LTD abolition in pubertal, prepubertal female, and in pubertal male rats without changes in ethanol metabolism. In male rats, a higher dose of ethanol was required to abolish LTD at 24-h delay. In pubertal female rats, tamoxifen, an antagonist of estrogen receptors, blocked the impairing effects of endogenous and exogenous E2 on LTD, suggesting estrogen interacts with ethanol through changes in gene expression. In addition, tamoxifen prevented LTD abolition at 24 h but not at 48-h delay. In conclusion, estrogen may explain the increased vulnerability to ethanol-induced plasticity impairment seen in females compared with males. This increased vulnerability of female rats is likely due to changes in the GluN2B subunit that represent a common target between ethanol and estrogen.


Subject(s)
Binge Drinking/metabolism , Estrogens/metabolism , Ethanol/pharmacology , Hippocampus/metabolism , Neuronal Plasticity , Animals , Central Nervous System Depressants/pharmacology , Female , Long-Term Synaptic Depression/drug effects , Male , Rats , Sex Characteristics
2.
Addict Biol ; 22(6): 1870-1882, 2017 Nov.
Article in English | MEDLINE | ID: mdl-27778437

ABSTRACT

Low to moderate perinatal ethanol exposure (PEE) may have disastrous consequences for the central nervous system resulting notably in permanent cognitive deficits. Learning and memory are mediated in the hippocampus by long-term potentiation (LTP) and long term depression (LTD), two forms of synaptic plasticity. PEE decreases LTP but also abnormally facilitates LTD (Kervern et al. ) through a presently unknown mechanism. We studied in rat hippocampus slice, the involvement of the chloride co-transporters NKCC1 and KCC2, in the role of GABAA inhibitions in facilitated LTD after moderate PEE. After PEE and in contrast to control slices, facilitated LTD in CA1 field was reduced by the GABAA receptor antagonist bicuculline with no changes in sensitivity to bicuculline and in GABA and benzodiazepine binding sites. Also, sensitivity to diazepam was unaltered, whereas aberrant LTD was blocked. Immunohistochemistry and protein analysis demonstrated an increase in KCC2 protein level at cell membrane in CA1 after PEE with no change in NKCC1 expression. Specifically, both monomeric and dimeric forms of KCC2 were increased in CA1. Bumetanide (10-100 µM), a dose-dependent blocker of NKCC1 and KCC2, or VU0240551 (10 µM) a specific antagonist of KCC2, corrected the enhanced LTD and interestingly bumetanide also restored the lower LTP after PEE. These results demonstrate for the first time an upregulation of the KCC2 co-transporter expression after moderate PEE associated with disturbances in GABAergic neurotransmission modulating bidirectional synaptic plasticity in the hippocampus. Importantly, bumetanide compensated deficits in both LTP and LTD, revealing its potential therapeutic properties.


Subject(s)
Central Nervous System Depressants/pharmacology , Ethanol/pharmacology , Hippocampus/drug effects , Neuronal Plasticity/drug effects , Prenatal Exposure Delayed Effects/pathology , Symporters/drug effects , Animals , Animals, Newborn , Blotting, Western , Disease Models, Animal , Female , Hippocampus/metabolism , Pregnancy , Rats , Rats, Sprague-Dawley , Symporters/metabolism , K Cl- Cotransporters
SELECTION OF CITATIONS
SEARCH DETAIL
...