Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Plants (Basel) ; 11(21)2022 Oct 31.
Article in English | MEDLINE | ID: mdl-36365382

ABSTRACT

BACKGROUND: Climate change results in warmer air temperatures and an uncertain amount and distribution of annual precipitations, which will directly impact rainfed crops, such as the grapevine. Traditionally, ancient autochthones grapevine varieties have been substituted by modern ones with higher productivity. However, this homogenization of genotypes reduces the genetic diversity of vineyards which could make their ability to adapt to challenges imposed by future climate conditions difficult. Therefore, this work aimed to assess the response of four ancient grapevine varieties to high temperatures under different water availabilities, focusing on plant water relations, grape technological and phenolic maturity, and the antioxidant capacity of the must. METHODS: The study was conducted on fruit-bearing cuttings grown in pots in temperature-gradient greenhouses. A two-factorial design was established where two temperature regimes, ambient and elevated (ambient + 4 °C), were combined with two water regimes, full irrigation and post-veraison deficit irrigation, during fruit ripening. RESULTS: There were significant differences among the ancient varieties regarding plant water relations and fruit quality. CONCLUSION: This research underlines the importance of evaluating the behavior of ancient grapevine varieties that could offer good options for the adaptation of viticulture to future climate conditions.

2.
Physiol Plant ; 174(4): e13741, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35765704

ABSTRACT

The implications of grape berry transpiration for the ripening process and final grape composition were studied. An experiment was conducted, under controlled conditions, with fruit-bearing cuttings of Vitis vinifera L. cv. Tempranillo. Three doses of the antitranspirant di-1-p-menthene were applied directly to the bunch at the onset of veraison: 1%, 5%, and 10% (v/v) (D1, D5, and D10, respectively). A treatment with bunches sprayed with water (D0) was also included as a control. Grape and bunch transpiration, and total soluble solids (TSS) accumulation rate decreased as the dose of antitranspirant increased, thus resulting in the lengthening of the ripening period. Bunch transpiration rates were linearly correlated with the elapsed time between veraison and maturity, and with the TSS accumulation rate. The evolution of pH, malic acid and total skin anthocyanins during ripening did not show remarkable changes as a consequence of the artificially reduced bunch transpiration. However, a decoupling between TSS and anthocyanins was observed. At maturity, the bunches treated with D10 had significantly lower must acidity and higher pH and extractable anthocyanin levels, these differences being likely associated with the lengthening of the ripening period. The results show a clear implication of grape transpiration for the ripening process and final grape composition, and give new hints on the direct application of antitranspirants to the bunch as a way to regulate sugar accumulation while avoiding the concurrent delay of color development.


Subject(s)
Vitis , Anthocyanins/metabolism , Biological Transport , Fruit/physiology , Sugars/analysis , Vitis/physiology
3.
Plants (Basel) ; 10(6)2021 Jun 11.
Article in English | MEDLINE | ID: mdl-34208410

ABSTRACT

The market demand together with the need for alternatives to withstand climate change led to the recovery of autochthonous grapevine varieties. Under climate change, the summer pruning of vineyards may lead to an increase of vegetative residuals of nutritional and medicinal interest. The objectives of our study were (1) to evaluate the nutritional properties of the leaves of three local Spanish grapevines (Tinto Velasco, TV, Pasera, PAS, and Ambrosina, AMB) when grown under climate change conditions, and (2) to test the potentiality of these grapevines as suitable candidates to be cultivated under climate change scenarios based on the quality of their must. Experimental assays were performed with fruit-bearing cuttings grown in temperature gradient greenhouses that simulate rising CO2 (700 µmol mol-1) and warming (ambient temperature +4 °C), either acting alone or in combination. TV and AMB were the most and the least affected by air temperature and CO2 concentration, respectively. The interaction of elevated CO2 with high temperature induced the accumulation of proteins and phenolic compounds in leaves of TV, thus enhancing their nutritional properties. In PAS, the negative effect of high temperature on protein contents was compensated for by elevated CO2. Warming was the most threatening scenario for maintaining the must quality in the three varieties, but elevated CO2 exerted a beneficial effect when acting alone and compensated for the negative effects of high temperatures. While TV may be a candidate to be cultivated in not very warm areas (higher altitudes or colder latitudes), PAS behaved as the most stable genotype under different environmental scenarios, making it the most versatile candidate for cultivation in areas affected by climate change.

4.
Plants (Basel) ; 10(1)2020 Dec 31.
Article in English | MEDLINE | ID: mdl-33396405

ABSTRACT

(1) Background: The associated increase in global mean surface temperature together with raised atmospheric carbon dioxide (CO2) concentration is exerting a profound influence on grapevine development (phenology) and grape quality. The exploitation of the local genetic diversity based on the recovery of ancient varieties has been proposed as an interesting option to cope with climate change and maintaining grape quality. Therefore, this research aimed to characterize the potential fruit quality of genotypes from seven local old grapevine varieties grown under climate change conditions. (2) Methods: The study was carried out on fruit-bearing cuttings (one cluster per plant) that were grown in pots in temperature gradient greenhouses (TGG). Two treatments were applied from fruit set to maturity: (1) ambient CO2 (400 ppm) and temperature (T) (ACAT) and (2) elevated CO2 (700 ppm) and temperature (T + 4 °C) (ECET). (3) Results: Results showed that some of the old genotypes tested remained quite stable during the climate change conditions in terms of fruit quality (mainly, total soluble solids and phenolic content) and of must antioxidant properties. (4) Conclusion: This research underlines the usefulness of exploiting local grapevine diversity to cope with climate change successfully, although further studies under field conditions and with whole plants are needed before extrapolating the results to the vineyard.

5.
Plants (Basel) ; 8(10)2019 Oct 08.
Article in English | MEDLINE | ID: mdl-31597352

ABSTRACT

(1) Background: Vitis vinifera L. cv. Tempranillo is cultivated over the world for its wine of high quality. The association of Tempranillo with arbuscular mycorrhizal fungi (AMF) induced the accumulation of phenolics and carotenoids in leaves, affected the metabolism of abscisic acid (ABA) during berry ripening, and modulated some characteristics and quality aspects of grapes. The objective of this study was to elucidate if AMF influenced the profiles and the content of primary and secondary metabolites determinants for berry quality in Tempranillo. (2) Methods: Fruit-bearing cuttings inoculated with AMF or uninoculated were cultivated under controlled conditions. (3) Results: Mycorrhizal symbiosis modified the profile of metabolites in Tempranillo berries, especially those of the primary compounds. The levels of glucose and amino acids clearly increased in berries of mycorrhized Tempranillo grapevines, including those of the aromatic precursor amino acids. However, mycorrhizal inoculation barely influenced the total amount and the profiles of anthocyanins and flavonols in berries. (4) Conclusions: Mycorrhizal inoculation of Tempranillo grapevines may be an alternative to the exogenous application of nitrogen compounds in order to enhance the contents of amino acids in grapes, which may affect the aromatic characteristics of wines.

6.
Plant Cell Environ ; 42(5): 1729-1746, 2019 05.
Article in English | MEDLINE | ID: mdl-30480826

ABSTRACT

A "box-in-box" cocultivation system was used to investigate plant responses to microbial volatile compounds (VCs) and to evaluate the contributions of organic and inorganic VCs (VOCs and VICs, respectively) to these responses. Arabidopsis plants were exposed to VCs emitted by adjacent Alternaria alternata and Penicillium aurantiogriseum cultures, with and without charcoal filtration. No VOCs were detected in the headspace of growth chambers containing fungal cultures with charcoal filters. However, these growth chambers exhibited elevated CO2 and bioactive CO and NO headspace concentrations. Independently of charcoal filtration, VCs from both fungal phytopathogens promoted growth and distinct developmental changes. Plants cultured at CO2 levels observed in growth boxes containing fungal cultures were identical to those cultured at ambient CO2 . Plants exposed to charcoal-filtered fungal VCs, nonfiltered VCs, or superelevated CO2 levels exhibited transcriptional changes resembling those induced by increased irradiance. Thus, in the "box-in-box" system, (a) fungal VICs other than CO2 and/or VOCs not detected by our analytical systems strongly influence the plants' responses to fungal VCs, (b) different microorganisms release VCs with distinct action potentials, (c) transcriptional changes in VC-exposed plants are mainly due to enhanced photosynthesis signaling, and (d) regulation of some plant responses to fungal VCs is primarily posttranscriptional.


Subject(s)
Arabidopsis/microbiology , Arabidopsis/physiology , Gene Expression/drug effects , Volatile Organic Compounds/pharmacology , Alternaria/metabolism , Carbon Dioxide/metabolism , Carbon Monoxide/metabolism , Nitric Oxide/biosynthesis , Nitric Oxide/metabolism , Penicillium/metabolism , Photosynthesis/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...