Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Med Phys ; 50(7): 4092-4104, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37265031

ABSTRACT

PURPOSE: Volumetric-modulated arc therapy for total body irradiation (VMAT-TBI) is a novel radiotherapy technique that has been implemented at our institution. The purpose of this work is to investigate possible failure modes (FMs) in the treatment process and to develop a quality control (QC) program for VMAT-TBI following TG-100 guidelines. METHODS: We formed a multidisciplinary team to map out the complete treatment process of VMAT-TBI following the AAPM TG-100 guidelines. This process map gives a visual representation of the VMAT-TBI workflow from the CT simulation, image processing, contouring, treatment planning, to treatment delivery. From the process map, potential FMs were identified. The occurrence (O), detectability (D), and severity of impact (S) of each FM were assigned according to scoring criteria (1-10) by the multidisciplinary team. A risk priority number (RPN) was calculated from average O, S, and D of each FM (RPN = O x S x D). High risk FMs were identified as 20% of the FMs having the highest RPN scores. After the FMEA analysis, fault-tree analysis (FTA) was performed for each major step of the treatment process to determine the effects of potential failures to the treatment outcome. Effective QC methods were identified to prevent the high risk failures and to improve the safety of the VMAT-TBI program. RESULTS: We identified a total of 55 sub-processes and 128 FMs from the VMAT-TBI workflow. The top five high-risk FMs were: (1) Prescription and/or OAR constraints changed during planning and not communicated to the planner, (2) Patient moves or breathes too heavily during the upper body CT scan (3) Patient moves during the lower body CT scan, (4) Treatment planning system not calculating total body DVH metrics correctly for TBI, (5) Improper optimization criteria used or not sufficient optimization, resulting in suboptimal dose coverage, OAR sparing or excessive hotspots during treatment planning. Two FMs have average severity scores ≥8: Incorrect PTV subdivision/isocenter placement and Prescription and/or OAR constraints changed during planning and not communicated to the planner. Quality assurance and QC interventions including staff training, standard operating procedures, and quality checklists were implemented based on the FMEA and FTA. CONCLUSION: FM and effect analysis was performed to identify high-risk FMs of our VMAT-TBI program. FMEA and FTA were effective in identifying potential FMs and determining the best quality management (QM) measures to implement in the VMAT-TBI program.


Subject(s)
Healthcare Failure Mode and Effect Analysis , Radiotherapy, Intensity-Modulated , Humans , Radiotherapy, Intensity-Modulated/adverse effects , Radiotherapy, Intensity-Modulated/methods , Whole-Body Irradiation , Radiotherapy Planning, Computer-Assisted/methods , Computer Simulation , Radiotherapy Dosage , Organs at Risk
2.
J Appl Clin Med Phys ; 24(9): e14045, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37211920

ABSTRACT

PURPOSE: To introduce a new technique for online breath-hold verification for liver stereotactic body radiation therapy (SBRT) based on kilovoltage-triggered imaging and liver dome positions. MATERIAL AND METHODS: Twenty-five liver SBRT patients treated with deep inspiration breath-hold were included in this IRB-approved study. To verify the breath-hold reproducibility during treatment, a KV-triggered image was acquired at the beginning of each breath-hold. The liver dome position was visually compared with the expected upper/lower liver boundaries created by expanding/contracting the liver contour 5 mm in the superior-inferior direction. If the liver dome was within the boundaries, delivery continued; otherwise, beam was held manually, and the patient was instructed to take another breath-hold until the liver dome fell within boundaries. The liver dome was delineated on each triggered image. The mean distance between the delineated liver dome to the projected planning liver contour was defined as liver dome position error edome . The mean and maximum edome of each patient were compared between no breath-hold verification (all triggered images) and with online breath-hold verification (triggered images without beam-hold). RESULTS: Seven hundred thirteen breath-hold triggered images from 92 fractions were analyzed. For each patient, an average of 1.5 breath-holds (range 0-7 for all patients) resulted in beam-hold, accounting for 5% (0-18%) of all breath-holds; online breath-hold verification reduced the mean edome from 3.1 mm (1.3-6.1 mm) to 2.7 mm (1.2-5.2 mm) and the maximum edome from 8.6 mm (3.0-18.0 mm) to 6.7 mm (3.0-9.0 mm). The percentage of breath-holds with edome >5 mm was reduced from 15% (0-42%) without breath-hold verification to 11% (0-35%) with online breath-hold verification. online breath-hold verification eliminated breath-holds with edome >10 mm, which happened in 3% (0-17%) of all breath-holds. CONCLUSION: It is clinically feasible to monitor the reproducibility of each breath-hold during liver SBRT treatment using triggered images and liver dome. Online breath-hold verification improves the treatment accuracy for liver SBRT.


Subject(s)
Radiosurgery , Humans , Reproducibility of Results , Radiotherapy Planning, Computer-Assisted/methods , Breath Holding , Liver/diagnostic imaging , Liver/surgery , Tomography, X-Ray Computed/methods
3.
Phys Med Biol ; 64(2): 02NT01, 2019 01 11.
Article in English | MEDLINE | ID: mdl-30540982

ABSTRACT

Longitudinal assessment of quantitative imaging biomarkers (QIBs) requires a comprehensive quality control (QC) program to minimize bias and variance in measurement results. In addition, the availability of data analysis software from multiple vendors emphasizes the need for a means of quantitatively comparing the computed QIB measures produced by the applications. The purpose of this work is to describe a digital reference object (DRO) that has been developed for the evaluation of arterial spin-labeling (ASL) measurement results. The ASL DRO is a synthetic data set consisting of 10 × 10 voxel square blocks with a range of ASL control image signal-to-noise ratio (SNRControl), blood flow (BF), and proton density (PD) image SNR values (SNRControl:1-100, BF:10-210 ml/100 g min-1, SNRPD:10-100). A pseudo-continuous ASL sequence was simulated with acquisition parameters and modeled signal intensities defined according to those typically associated with clinically-acquired ASL images. ASL parameters were estimated using the commercially-available nordicICE software package (NordicNeuroLab, Inc, Milwaukee, WI). Percent bias measures and Bland-Altman analyses demonstrated decreased bias and variance with increasing SNRControl and BF values. Excellent agreement with reference values was seen for all BF values above an SNRControl of 5 (concordance correlation coefficient greater than 0.92 for all SNRPD values). The ASL DRO developed in this work allows for the evaluation of software bias and variance across physiologically-meaningful BF and SNRControl values. Such studies are essential to the transition of quantitative ASL-based BF measurements into widespread clinical research applications, and ultimately, routine clinical care.


Subject(s)
Arteries/diagnostic imaging , Data Analysis , Phantoms, Imaging , Quality Control , Signal-To-Noise Ratio , Spin Labels , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...