Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Mater Sci Eng C Mater Biol Appl ; 61: 651-8, 2016 Apr 01.
Article in English | MEDLINE | ID: mdl-26838893

ABSTRACT

This study examines a biocompatible scaffold series of random copolymer networks P(EA-HEA) made of Ethyl Acrylate, EA, and 2-Hydroxyl Ethyl Acrylate, HEA. The P(EA-HEA) scaffolds have been synthesized with varying crosslinking density and filled with a Poly(Vinyl Alcohol), PVA, to mimic the growing cartilaginous tissue during tissue repair. In cartilage regeneration the scaffold needs to have sufficient mechanical properties to sustain the compression in the joint and, at the same time, transmit mechanical signals to the cells for chondrogenic differentiation. Mechanical tests show that the elastic modulus increases with increasing crosslinking density of P(EA-HEA) scaffolds. The water plays an important role in the mechanical behavior of the scaffold, but highly depends on the crosslinking density of the proper polymer. Furthermore, when the scaffold with hydrogel is tested it can be seen that the modulus increases with increasing hydrogel density. Even so, the mechanical properties are inferior than those of the scaffolds with water filling the pores. The hydrogel inside the pores of the scaffolds facilitates the expulsion of water during compression and lowers the mechanical modulus of the scaffold. The P(EA-HEA) with PVA shows to be a good artificial cartilage model with mechanical properties close to native articular cartilage.


Subject(s)
Acrylic Resins/chemistry , Cartilage , Tissue Scaffolds/chemistry , Porosity
2.
Biomaterials ; 67: 254-63, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26231916

ABSTRACT

The aim of this paper is to present a method to produce macroporous thin membranes made of poly (ethyl acrylate-co-hydroxyethyl acrylate) copolymer network with varying cross-linking density for cell transplantation and prosthesis fabrication. The manufacture process is based on template techniques and anisotropic pore collapse. Pore collapse was produced by swelling the membrane in acetone and subsequently drying and changing the solvent by water to produce 100 microns thick porous membranes. These very thin membranes are porous enough to hold cells to be transplanted to the organism or to be colonized by ingrowth from neighboring tissues in the organism, and they present sufficient tearing stress to be sutured with surgical thread. The obtained pore morphology was observed by Scanning Electron Microscope, and confocal laser microscopy. Mechanical properties were characterized by stress-strain experiments in tension and tearing strength measurements. Morphology and mechanical properties were related to the different initial thickness of the scaffold and the cross-linking density of the polymer network. Seeding efficiency and proliferation of mesenchymal stem cells inside the pore structure were determined at 2 h, 1, 7, 14 and 21 days from seeding.


Subject(s)
Cell Transplantation/methods , Membranes, Artificial , Regenerative Medicine/methods , Actin Cytoskeleton/drug effects , Actin Cytoskeleton/metabolism , Animals , Cell Proliferation/drug effects , Cross-Linking Reagents/pharmacology , DNA/metabolism , Fluorescent Antibody Technique , Mechanical Phenomena , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/drug effects , Porosity , Sus scrofa , Tissue Scaffolds/chemistry , Vinculin/metabolism
3.
J Biomed Mater Res B Appl Biomater ; 101(6): 991-7, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23529953

ABSTRACT

The aim of this paper is to quantify the adhered fibronectin (FN; by adsorption and/or grafting) and the exposure of its cell adhesive motifs (RGD and FNIII7-10) on poly(ethyl acrylate) (PEA) copolymers whose chemical composition has been designed to increase wettability and to introduce acid functional groups. FN was adsorbed to PEA, poly(ethyl acrylate-co-hydroxyethyl acrylate), poly(ethyl acrylate-co-acrylic acid), and poly(ethyl acrylate-co-methacrylic acid) copolymers, and covalently cross-linked to poly(ethyl acrylate-co-acrylic acid) and poly(ethyl acrylate-co-methacrylic acid) copolymers. Amount of adhered FN and exhibition of RGD and FNIII7- 10 fragments involved in cell adhesion were quantified with enzyme-linked immunosorbent assay tests. Even copolymers with a lower content of the hydrophilic component showed a decrease in water contact angle. In addition, FN was successfully fixed on all surfaces, especially on the hydrophobic surfaces. However, it was demonstrated that exposure of its cell adhesion sequences, which is the key factor in cell adhesion and proliferation, was higher for hydrophilic surfaces.


Subject(s)
Acrylic Resins/chemistry , Coated Materials, Biocompatible/chemistry , Fibronectins/chemistry , Acrylates/chemistry , Adsorption , Amino Acid Motifs , Cell Adhesion , Cells, Cultured , Humans , Materials Testing , Methacrylates/chemistry , Oligopeptides/chemistry , Surface Properties , Wettability
SELECTION OF CITATIONS
SEARCH DETAIL
...