Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Language
Publication year range
1.
Preprint in English | bioRxiv | ID: ppbiorxiv-478946

ABSTRACT

We assessed the affinities of the therapeutic monoclonal antibodies (mAbs) cilgavimab, tixagevimab, sotrovimab, casirivimab, and imdevimab to the receptor binding domain (RBD) of wild type, Delta, and Omicron spike. The Omicron RBD affinities of cilgavimab, tixagevimab, casirivimab, and imdevimab decreased by at least two orders of magnitude relative to their wild type equivalents, whereas sotrovimab binding was less severely impacted. These affinity reductions correlate with reduced antiviral activities of these antibodies, suggesting that simple affinity measurements can serve as an indicator for activity before challenging and time-consuming virus neutralization assays are performed. We also compared the properties of these antibodies to serological fingerprints (affinities and concentrations) of wild type RBD specific antibodies in 74 convalescent sera. The affinities of the therapeutic mAbs to wild type and Delta RBD were in the same range as the polyclonal response in the convalescent sera indicative of their high antiviral activities against these variants. However, for Omicron RBD, only sotrovimab retained affinities that were within the range of the polyclonal response, in agreement with its high activity against Omicron. Serological fingerprints thus provide important context to affinities and antiviral activity of mAb drugs and could guide the development of new therapeutics.

2.
Preprint in English | bioRxiv | ID: ppbiorxiv-454829

ABSTRACT

Three highly pathogenic betacoronaviruses have crossed the species barrier and established human-to-human transmission causing significant morbidity and mortality in the past 20 years. The most current and widespread of these is SARS-CoV-2. The identification of CoVs with zoonotic potential in animal reservoirs suggests that additional outbreaks are likely to occur. Evidence suggests that neutralizing antibodies are important for protection against infection with CoVs. Monoclonal antibodies targeting conserved neutralizing epitopes on diverse CoVs can form the basis for prophylaxis and therapeutic treatments and enable the design of vaccines aimed at providing pan-coronavirus protection. To this end, we previously identified a neutralizing monoclonal antibody, CV3-25 that binds to the SARS-CoV-2 fusion machinery, neutralizes the SARS-CoV-2 Beta variant comparably to the ancestral Wuhan Hu-1 strain, cross neutralizes SARS-CoV-1 and displays cross reactive binding to recombinant proteins derived from the spike-ectodomains of HCoV-OC43 and HCoV-HKU1. Here, we show that the neutralizing activity of CV3-25 is also maintained against the Alpha, Delta and Gamma variants of concern as well as a SARS-CoV-like bat coronavirus with zoonotic potential by binding to a conserved linear peptide in the stem-helix region on sarbecovirus spikes. A 1.74[A] crystal structure of a CV3-25/peptide complex demonstrates that CV3-25 binds to the base of the stem helix at the HR2 boundary to an epitope that is distinct from other stem-helix directed neutralizing mAbs. Thus, CV3-25 defines a novel site of sarbecovirus vulnerability that will inform pan-CoV vaccine development.

3.
Preprint in English | medRxiv | ID: ppmedrxiv-20245431

ABSTRACT

Determinants of protective immunity against SARS-CoV-2 infection require the development of well-standardized, reproducible antibody assays to be utilized in concert with clinical trials to establish correlates of risk and protection. This need has led to the appearance of a variety of neutralization assays used by different laboratories and companies. Using plasma samples from COVID-19 convalescent individuals with mild-to-moderate disease from a localized outbreak in a single region of the western US, we compared three platforms for SARS-CoV-2 neutralization: assay with live SARS-CoV-2, pseudovirus assay utilizing lentiviral (LV) and vesicular stomatitis virus (VSV) packaging, and a surrogate ELISA test. Vero, Vero E6, HEK293T cells expressing human angiotensin converting enzyme 2 (hACE2), and TZM-bl cells expressing hACE2 and transmembrane serine protease 2 (TMPRSS2) were evaluated. Live-virus and LV-pseudovirus assay with HEK293T cells showed similar geometric mean titers (GMTs) ranging 141-178, but VSV-pseudovirus assay yielded significantly higher GMT (310 95%CI 211-454; p < 0.001). Fifty percent neutralizing dilution (ND50) titers from live-virus and all pseudovirus assay readouts were highly correlated (Pearson r = 0.81-0.89). ND50 titers positively correlated with plasma concentration of IgG against SARS-CoV-2 spike and receptor binding domain (RBD) (r = 0.63-0.89), but moderately correlated with nucleoprotein IgG (r = 0.46-0.73). There was a moderate positive correlation between age and spike (Spearmans rho=0.37, p=0.02), RBD (rho=0.39, p=0.013) and nucleoprotein IgG (rho=0.45, p=0.003). ND80 showed stronger correlation with age than ND50 (ND80 rho=0.51 (p=0.001), ND50 rho=0.28 (p=0.075)). Our data demonstrate high concordance between cell-based assays with live and pseudotyped virions.

4.
Preprint in English | medRxiv | ID: ppmedrxiv-20157198

ABSTRACT

Community-level seroprevalence surveys are needed to determine the proportion of the population with previous SARS-CoV-2 infection, a necessary component of COVID-19 disease surveillance. In May, 2020, we conducted a cross-sectional seroprevalence study of IgG antibodies for nucleocapsid of SARS-CoV-2 among the residents of Blaine County, Idaho, a ski resort community with high COVID-19 attack rates in late March and Early April (2.9% for ages 18 and older). Participants were selected from volunteers who registered via a secure web link, using prestratification weighting to the population distribution by age and gender within each ZIP Code. Participants completed a survey reporting their demographics and symptoms; 88% of volunteers who were invited to participate completed data collection survey and had 10 ml of blood drawn. Serology was completed via the Abbott Architect SARS-CoV-2 IgG immunoassay. Primary analyses estimated seroprevalence and 95% credible intervals (CI) using a hierarchical Bayesian framework to account for diagnostic uncertainty. Stratified models were run by age, sex, ZIP Code, ethnicity, employment status, and a priori participant-reported COVID-19 status. Sensitivity analyses to estimate seroprevalence included base models with post-stratification for ethnicity, age, and sex, with or without adjustment for multi-participant households. IgG antibodies to the virus that causes COVID-19 were found among 22.7% (95% CI: 20.1%, 25.5%) of residents of Blaine County. Higher levels of antibodies were found among residents of the City of Ketchum 34.8% (95% CI 29.3%, 40.5%), compared to Hailey 16.8% (95%CI 13.7%, 20.3%) and Sun Valley 19.4% (95% 11.8%, 28.4%). People who self-identified as not believing they had COVID-19 had the lowest prevalence 4.8% (95% CI 2.3%, 8.2%). The range of seroprevalence after correction for potential selection bias was 21.9% to 24.2%. This study suggests more than 80% of SARS-CoV-2 infections were not reported. Although Blaine County had high levels of SARS-CoV-2 infection, the community is not yet near the herd immunity threshold.

SELECTION OF CITATIONS
SEARCH DETAIL
...