Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
Nature ; 619(7971): 733-737, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37316663

ABSTRACT

Knowledge of the interior structure and atmosphere of Mars is essential to understanding how the planet has formed and evolved. A major obstacle to investigations of planetary interiors, however, is that they are not directly accessible. Most of the geophysical data provide global information that cannot be separated into contributions from the core, the mantle and the crust. The NASA InSight mission changed this situation by providing high-quality seismic and lander radio science data1,2. Here we use the InSight's radio science data to determine fundamental properties of the core, mantle and atmosphere of Mars. By precisely measuring the rotation of the planet, we detected a resonance with a normal mode that allowed us to characterize the core and mantle separately. For an entirely solid mantle, we found that the liquid core has a radius of 1,835 ± 55 km and a mean density of 5,955-6,290 kg m-3, and that the increase in density at the core-mantle boundary is 1,690-2,110 kg m-3. Our analysis of InSight's radio tracking data argues against the existence of a solid inner core and reveals the shape of the core, indicating that there are internal mass anomalies deep within the mantle. We also find evidence of a slow acceleration in the Martian rotation rate, which could be the result of a long-term trend either in the internal dynamics of Mars or in its atmosphere and ice caps.

2.
Proc Natl Acad Sci U S A ; 120(18): e2217090120, 2023 May 02.
Article in English | MEDLINE | ID: mdl-37094138

ABSTRACT

We present the first observations of seismic waves propagating through the core of Mars. These observations, made using seismic data collected by the InSight geophysical mission, have allowed us to construct the first seismically constrained models for the elastic properties of Mars' core. We observe core-transiting seismic phase SKS from two farside seismic events detected on Mars and measure the travel times of SKS relative to mantle traversing body waves. SKS travels through the core as a compressional wave, providing information about bulk modulus and density. We perform probabilistic inversions using the core-sensitive relative travel times together with gross geophysical data and travel times from other, more proximal, seismic events to seek the equation of state parameters that best describe the liquid iron-alloy core. Our inversions provide constraints on the velocities in Mars' core and are used to develop the first seismically based estimates of its composition. We show that models informed by our SKS data favor a somewhat smaller (median core radius = 1,780 to 1,810 km) and denser (core density = 6.2 to 6.3 g/cm3) core compared to previous estimates, with a P-wave velocity of 4.9 to 5.0 km/s at the core-mantle boundary, with the composition and structure of the mantle as a dominant source of uncertainty. We infer from our models that Mars' core contains a median of 20 to 22 wt% light alloying elements when we consider sulfur, oxygen, carbon, and hydrogen. These data can be used to inform models of planetary accretion, composition, and evolution.

3.
Proc Natl Acad Sci U S A ; 119(42): e2204474119, 2022 10 18.
Article in English | MEDLINE | ID: mdl-36215469

ABSTRACT

Constraining the thermal and compositional state of the mantle is crucial for deciphering the formation and evolution of Mars. Mineral physics predicts that Mars' deep mantle is demarcated by a seismic discontinuity arising from the pressure-induced phase transformation of the mineral olivine to its higher-pressure polymorphs, making the depth of this boundary sensitive to both mantle temperature and composition. Here, we report on the seismic detection of a midmantle discontinuity using the data collected by NASA's InSight Mission to Mars that matches the expected depth and sharpness of the postolivine transition. In five teleseismic events, we observed triplicated P and S waves and constrained the depth of this discontinuity to be 1,006 [Formula: see text] 40 km by modeling the triplicated waveforms. From this depth range, we infer a mantle potential temperature of 1,605 [Formula: see text] 100 K, a result consistent with a crust that is 10 to 15 times more enriched in heat-producing elements than the underlying mantle. Our waveform fits to the data indicate a broad gradient across the boundary, implying that the Martian mantle is more enriched in iron compared to Earth. Through modeling of thermochemical evolution of Mars, we observe that only two out of the five proposed composition models are compatible with the observed boundary depth. Our geodynamic simulations suggest that the Martian mantle was relatively cold 4.5 Gyr ago (1,720 to 1,860 K) and are consistent with a present-day surface heat flow of 21 to 24 mW/m2.


Subject(s)
Extraterrestrial Environment , Mars , Earth, Planet , Iron , Minerals
4.
J Geophys Res Solid Earth ; 127(11): e2022JB025117, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36590903

ABSTRACT

FeO represents an important end-member for planetary interiors mineralogy. However, its properties in the liquid state under high pressure are poorly constrained. Here, in situ high-pressure and high-temperature X-ray diffraction experiments, ab initio simulations, and thermodynamic calculations are combined to study the local structure and density evolution of liquid FeO under extreme conditions. Our results highlight a strong shortening of the Fe-Fe distance, particularly pronounced between ambient pressure and ∼40 GPa, possibly related with the insulator to metal transition occurring in solid FeO over a similar pressure range. Liquid density is smoothly evolving between 60 and 150 GPa from values calculated for magnetic liquid to those calculated for non-magnetic liquid, compatibly with a continuous spin crossover in liquid FeO. The present findings support the potential decorrelation between insulator/metal transition and the high-spin to low-spin continuous transition, and relate the changes in the microscopic structure with macroscopic properties, such as the closure of the Fe-FeO miscibility gap. Finally, these results are used to construct a parameterized thermal equation of state for liquid FeO providing densities up to pressure and temperature conditions expected at the Earth's core-mantle boundary.

5.
Science ; 373(6553): 438-443, 2021 07 23.
Article in English | MEDLINE | ID: mdl-34437117

ABSTRACT

A planet's crust bears witness to the history of planetary formation and evolution, but for Mars, no absolute measurement of crustal thickness has been available. Here, we determine the structure of the crust beneath the InSight landing site on Mars using both marsquake recordings and the ambient wavefield. By analyzing seismic phases that are reflected and converted at subsurface interfaces, we find that the observations are consistent with models with at least two and possibly three interfaces. If the second interface is the boundary of the crust, the thickness is 20 ± 5 kilometers, whereas if the third interface is the boundary, the thickness is 39 ± 8 kilometers. Global maps of gravity and topography allow extrapolation of this point measurement to the whole planet, showing that the average thickness of the martian crust lies between 24 and 72 kilometers. Independent bulk composition and geodynamic constraints show that the thicker model is consistent with the abundances of crustal heat-producing elements observed for the shallow surface, whereas the thinner model requires greater concentration at depth.

6.
Science ; 373(6553): 443-448, 2021 07 23.
Article in English | MEDLINE | ID: mdl-34437118

ABSTRACT

Clues to a planet's geologic history are contained in its interior structure, particularly its core. We detected reflections of seismic waves from the core-mantle boundary of Mars using InSight seismic data and inverted these together with geodetic data to constrain the radius of the liquid metal core to 1830 ± 40 kilometers. The large core implies a martian mantle mineralogically similar to the terrestrial upper mantle and transition zone but differing from Earth by not having a bridgmanite-dominated lower mantle. We inferred a mean core density of 5.7 to 6.3 grams per cubic centimeter, which requires a substantial complement of light elements dissolved in the iron-nickel core. The seismic core shadow as seen from InSight's location covers half the surface of Mars, including the majority of potentially active regions-e.g., Tharsis-possibly limiting the number of detectable marsquakes.

7.
Sci Rep ; 10(1): 11663, 2020 Jul 15.
Article in English | MEDLINE | ID: mdl-32669572

ABSTRACT

X-ray absorption spectroscopy (XAS) is a widely used technique to probe the local environment around specific atomic species. Applied to samples under extreme pressure and temperature conditions, XAS is sensitive to phase transitions, including melting, and allows gathering insights on compositional variations and electronic changes occurring during such transitions. These characteristics can be exploited for studies of prime interest in geophysics and fundamental high-pressure physics. Here, we investigated the melting curve and the eutectic composition of four geophysically relevant iron binary systems: Fe-C, Fe-O, Fe-S and Fe-Si. Our results show that all these systems present the same spectroscopic signatures upon melting, common to those observed for other pure late 3d transition metals. The presented melting criterion seems to be general for late 3d metals bearing systems. Additionally, we demonstrate the suitability of XAS to extract melt compositional information in situ, such as the evolution of the concentration of light elements with increasing temperature. Diagnostics presented in this work can be applied to studies over an even larger pressure range exploiting the upgraded synchrotron machines, and directly transferred to time-resolved extreme condition studies using dynamic compression (ns) or fast laser heating (ms).

9.
Sci Rep ; 6: 31887, 2016 08 19.
Article in English | MEDLINE | ID: mdl-27539662

ABSTRACT

In spite of the simple body-centered-cubic crystal structure, the elements of group V, vanadium, niobium and tantalum, show strong interactions between the electronic properties and lattice dynamics. Further, these interactions can be tuned by external parameters, such as pressure and temperature. We used inelastic x-ray scattering to probe the phonon dispersion of single-crystalline vanadium as a function of pressure to 45 GPa. Our measurements show an anomalous high-pressure behavior of the transverse acoustic mode along the (100) direction and a softening of the elastic modulus C44 that triggers a rhombohedral lattice distortion occurring between 34 and 39 GPa. Our results provide the missing experimental confirmation of the theoretically predicted shear instability arising from the progressive intra-band nesting of the Fermi surface with increasing pressure, a scenario common to all transition metals of group V.

10.
Sci Rep ; 5: 14996, 2015 Oct 13.
Article in English | MEDLINE | ID: mdl-26459927

ABSTRACT

The THz spectrum of density fluctuations, S(Q, ω), of vitreous GeO2 at ambient temperature was measured by inelastic x-ray scattering from ambient pressure up to pressures well beyond that of the known α-quartz to rutile polyamorphic (PA) transition. We observe significant differences in the spectral shape measured below and above the PA transition, in particular, in the 30-80 meV range. Guided by first-principle lattice dynamics calculations, we interpret the changes in the phonon dispersion as the evolution from a quartz-like to a rutile-like coordination. Notably, such a crossover is accompanied by a cusp-like behavior in the pressure dependence of the elastic response of the system. Overall, the presented results highlight the complex fingerprint of PA phenomena on the high-frequency phonon dispersion.

11.
Proc Natl Acad Sci U S A ; 112(13): 3916-9, 2015 Mar 31.
Article in English | MEDLINE | ID: mdl-25775531

ABSTRACT

The physical properties of iron (Fe) at high pressure and high temperature are crucial for understanding the chemical composition, evolution, and dynamics of planetary interiors. Indeed, the inner structures of the telluric planets all share a similar layered nature: a central metallic core composed mostly of iron, surrounded by a silicate mantle, and a thin, chemically differentiated crust. To date, most studies of iron have focused on the hexagonal closed packed (hcp, or ε) phase, as ε-Fe is likely stable across the pressure and temperature conditions of Earth's core. However, at the more moderate pressures characteristic of the cores of smaller planetary bodies, such as the Moon, Mercury, or Mars, iron takes on a face-centered cubic (fcc, or γ) structure. Here we present compressional and shear wave sound velocity and density measurements of γ-Fe at high pressures and high temperatures, which are needed to develop accurate seismic models of planetary interiors. Our results indicate that the seismic velocities proposed for the Moon's inner core by a recent reanalysis of Apollo seismic data are well below those of γ-Fe. Our dataset thus provides strong constraints to seismic models of the lunar core and cores of small telluric planets. This allows us to propose a direct compositional and velocity model for the Moon's core.

12.
Science ; 339(6124): 1194-7, 2013 Mar 08.
Article in English | MEDLINE | ID: mdl-23306436

ABSTRACT

The abundance of siderophile elements in the mantle preserves the signature of core formation. On the basis of partitioning experiments at high pressure (35 to 74 gigapascals) and high temperature (3100 to 4400 kelvin), we demonstrate that depletions of slightly siderophile elements (vanadium and chromium), as well as moderately siderophile elements (nickel and cobalt), can be produced by core formation under more oxidizing conditions than previously proposed. Enhanced solubility of oxygen in the metal perturbs the metal-silicate partitioning of vanadium and chromium, precluding extrapolation of previous results. We propose that Earth accreted from materials as oxidized as ordinary or carbonaceous chondrites. Transfer of oxygen from the mantle to the core provides a mechanism to reduce the initial magma ocean redox state to that of the present-day mantle, reconciling the observed mantle vanadium and chromium concentrations with geophysical constraints on light elements in the core.

13.
Proc Natl Acad Sci U S A ; 108(23): 9342-5, 2011 Jun 07.
Article in English | MEDLINE | ID: mdl-21597000

ABSTRACT

Many physical and chemical properties of the light rare-earths and actinides are governed by the active role of f electrons, and despite intensive efforts the details of the mechanisms of phase stability and transformation are not fully understood. A prominent example which has attracted a lot of interest, both experimentally and theoretically over the years is the isostructural γ - α transition in cerium. We have determined by inelastic X-ray scattering, the complete phonon dispersion scheme of elemental cerium across the γ → α transition, and compared it with theoretical results using ab initio lattice dynamics. Several phonon branches show strong changes in the dispersion shape, indicating large modifications in the interactions between phonons and conduction electrons. This is reflected as well by the lattice Grüneisen parameters, particularly around the X point. We derive a vibrational entropy change ΔS(γ-α)(vib) ≈ (0.33+/-0.03)k(B), illustrating the importance of the lattice contribution to the transition. Additionally, we compare first principles calculations with the experiments to shed light on the mechanism underlying the isostructural volume collapse in cerium under pressure.


Subject(s)
Cerium/chemistry , Chemical Phenomena , Models, Chemical , Algorithms , Kinetics , Scattering, Small Angle , X-Ray Diffraction/methods
14.
Proc Natl Acad Sci U S A ; 108(13): 5184-7, 2011 Mar 29.
Article in English | MEDLINE | ID: mdl-21402927

ABSTRACT

The global geochemical carbon cycle involves exchanges between the Earth's interior and the surface. Carbon is recycled into the mantle via subduction mainly as carbonates and is released to the atmosphere via volcanism mostly as CO(2). The stability of carbonates versus decarbonation and melting is therefore of great interest for understanding the global carbon cycle. For all these reasons, the thermodynamic properties and phase diagrams of these minerals are needed up to core mantle boundary conditions. However, the nature of C-bearing minerals at these conditions remains unclear. Here we show the existence of a new Mg-Fe carbon-bearing compound at depths greater than 1,800 km. Its structure, based on three-membered rings of corner-sharing (CO(4))(4-) tetrahedra, is in close agreement with predictions by first principles quantum calculations [Oganov AR, et al. (2008) Novel high-pressure structures of MgCO(3), CaCO(3) and CO(2) and their role in Earth's lower mantle. Earth Planet Sci Lett 273:38-47]. This high-pressure polymorph of carbonates concentrates a large amount of Fe((III)) as a result of intracrystalline reaction between Fe((II)) and (CO(3))(2-) groups schematically written as 4FeO + CO(2) → 2Fe(2)O(3) + C. This results in an assemblage of the new high-pressure phase, magnetite and nanodiamonds.


Subject(s)
Carbon/chemistry , Carbonates/chemistry , Earth, Planet , Minerals/chemistry , Iron/chemistry , Magnesium/chemistry , Molecular Structure , Pressure , Temperature , Thermodynamics , X-Ray Diffraction
15.
Science ; 331(6013): 64-7, 2011 Jan 07.
Article in English | MEDLINE | ID: mdl-21212352

ABSTRACT

Seismic discontinuities in Earth typically arise from structural, chemical, or temperature variations with increasing depth. The pressure-induced iron spin state transition in the lower mantle may influence seismic wave velocities by changing the elasticity of iron-bearing minerals, but no seismological evidence of an anomaly exists. Inelastic x-ray scattering measurements on (Mg(0.83)Fe(0.17))O-ferropericlase at pressures across the spin transition show effects limited to the only shear moduli of the elastic tensor. This explains the absence of deviation in the aggregate seismic velocities and, thus, the lack of a one-dimensional seismic signature of the spin crossover. The spin state transition does, however, influence shear anisotropy of ferropericlase and should contribute to the seismic shear wave anisotropy of the lower mantle.

16.
Phys Rev Lett ; 100(8): 085501, 2008 Feb 29.
Article in English | MEDLINE | ID: mdl-18352634

ABSTRACT

We performed high-resolution inelastic x-ray scattering measurements on a single crystal of hcp cobalt at simultaneous high pressure and high temperature, obtaining 4 of the 5 independent elements of the elastic tensor. Our experiments indicate that the elasticity of hcp-Co is well described within the quasiharmonic approximation and that anharmonic high-temperature effects on the elastic moduli, sound velocities, and elastic anisotropy are minimal at constant density. These results support the validity of Birch's law and represent an important benchmark for ab initio thermal lattice dynamics and molecular-dynamics simulations.

17.
Phys Rev Lett ; 96(11): 115502, 2006 Mar 24.
Article in English | MEDLINE | ID: mdl-16605838

ABSTRACT

We have determined the lattice dynamics of molybdenum at high pressure to 37 GPa using high-resolution inelastic x-ray scattering. Over the investigated pressure range, we find a significant decrease in the H-point phonon anomaly. We also present calculations based on density functional theory that accurately predict this pressure dependence. Based on these results, we infer that the likely explanation for the H-point anomaly in molybdenum is strong electron-phonon coupling, which decreases upon compression due to the shift of the Fermi level with respect to the relevant electronic bands.

SELECTION OF CITATIONS
SEARCH DETAIL
...