Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 38
Filter
Add more filters










Publication year range
1.
Cancer Immunol Immunother ; 73(6): 113, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38693312

ABSTRACT

Senescent cells have a profound impact on the surrounding microenvironment through the secretion of numerous bioactive molecules and inflammatory factors. The induction of therapy-induced senescence by anticancer drugs is known, but how senescent tumor cells influence the tumor immune landscape, particularly neutrophil activity, is still unclear. In this study, we investigate the induction of cellular senescence in breast cancer cells and the subsequent immunomodulatory effects on neutrophils using the CDK4/6 inhibitor palbociclib, which is approved for the treatment of breast cancer and is under intense investigation for additional malignancies. Our research demonstrates that palbociclib induces a reversible form of senescence endowed with an inflammatory secretome capable of recruiting and activating neutrophils, in part through the action of interleukin-8 and acute-phase serum amyloid A1. The activation of neutrophils is accompanied by the release of neutrophil extracellular trap and the phagocytic removal of senescent tumor cells. These findings may be relevant for the success of cancer therapy as neutrophils, and neutrophil-driven inflammation can differently affect tumor progression. Our results reveal that neutrophils, as already demonstrated for macrophages and natural killer cells, can be recruited and engaged by senescent tumor cells to participate in their clearance. Understanding the interplay between senescent cells and neutrophils may lead to innovative strategies to cope with chronic or tumor-associated inflammation.


Subject(s)
Breast Neoplasms , Cellular Senescence , Neutrophils , Piperazines , Pyridines , Humans , Piperazines/pharmacology , Pyridines/pharmacology , Cellular Senescence/drug effects , Breast Neoplasms/metabolism , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Female , Neutrophils/metabolism , Neutrophils/immunology , Neutrophils/drug effects , Cell Line, Tumor , Neutrophil Activation/drug effects , Tumor Microenvironment/drug effects
2.
Mol Cancer ; 23(1): 68, 2024 04 01.
Article in English | MEDLINE | ID: mdl-38561826

ABSTRACT

Cancer progression is continuously controlled by the immune system which can identify and destroy nascent tumor cells or inhibit metastatic spreading. However, the immune system and its deregulated activity in the tumor microenvironment can also promote tumor progression favoring the outgrowth of cancers capable of escaping immune control, in a process termed cancer immunoediting. This process, which has been classified into three phases, i.e. "elimination", "equilibrium" and "escape", is influenced by several cancer- and microenvironment-dependent factors. Senescence is a cellular program primed by cells in response to different pathophysiological stimuli, which is based on long-lasting cell cycle arrest and the secretion of numerous bioactive and inflammatory molecules. Because of this, cellular senescence is a potent immunomodulatory factor promptly recruiting immune cells and actively promoting tissue remodeling. In the context of cancer, these functions can lead to both cancer immunosurveillance and immunosuppression. In this review, the authors will discuss the role of senescence in cancer immunoediting, highlighting its context- and timing-dependent effects on the different three phases, describing how senescent cells promote immune cell recruitment for cancer cell elimination or sustain tumor microenvironment inflammation for immune escape. A potential contribution of senescent cells in cancer dormancy, as a mechanism of therapy resistance and cancer relapse, will be discussed with the final objective to unravel the immunotherapeutic implications of senescence modulation in cancer.


Subject(s)
Neoplasms , Humans , Neoplasms/pathology , Cellular Senescence , Immune System , Immunosuppression Therapy , Tumor Microenvironment
3.
Cell Death Dis ; 15(3): 210, 2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38480690

ABSTRACT

In recent years, several studies described the close relationship between the composition of gut microbiota and brain functions, highlighting the importance of gut-derived metabolites in mediating neuronal and glial cells cross-talk in physiological and pathological condition. Gut dysbiosis may affects cerebral tumors growth and progression, but the specific metabolites involved in this modulation have not been identified yet. Using a syngeneic mouse model of glioma, we have investigated the role of dysbiosis induced by the administration of non-absorbable antibiotics on mouse metabolome and on tumor microenvironment. We report that antibiotics treatment induced: (1) alteration of the gut and brain metabolome profiles; (2) modeling of tumor microenvironment toward a pro-angiogenic phenotype in which microglia and glioma cells are actively involved; (3) increased glioma stemness; (4) trans-differentiation of glioma cells into endothelial precursor cells, thus increasing vasculogenesis. We propose glycine as a metabolite that, in ABX-induced dysbiosis, shapes brain microenvironment and contributes to glioma growth and progression.


Subject(s)
Brain Neoplasms , Glioma , Mice , Animals , Dysbiosis , Glioma/pathology , Anti-Bacterial Agents/adverse effects , Brain/metabolism , Brain Neoplasms/pathology , Tumor Microenvironment
4.
Int J Mol Sci ; 24(11)2023 May 30.
Article in English | MEDLINE | ID: mdl-37298418

ABSTRACT

Natural Killer (NK) cells are innate cytotoxic lymphoid cells that play a crucial role in cancer immunosurveillance. NKG2D is an activating receptor that binds to MIC and ULBP molecules typically induced on damaged, transformed, or infected cells. The secretion of NKG2D ligands (NKG2DLs) through protease-mediated cleavage or in an extracellular vesicle (EV) is a mode to control their cell surface expression and a mechanism used by cancer cells to evade NKG2D-mediated immunosurveillance. EVs are emerging as important players in mediating cell-to-cell communication due to their ability to transfer biological material to acceptor cells. Herein, we investigated the spreading of NKG2DLs of both MIC and ULBP molecules through the EV-mediated cross-dressing on multiple myeloma (MM) cells. We focused our attention on two MICA allelic variants, namely MICA*008 and MICA*019, representing the prototype of short and long MICA alleles, respectively, and on ULBP-1, ULBP-2, and ULBP-3. Our findings demonstrate that both ULBP and MICA ligands can be acquired from tumor cells through EVs enhancing NK cell recognition and killing. Moreover, besides MICA, EVs expressing ULBP-1 but not ULBP-2 and 3 were detected in bone marrow aspirates derived from a cohort of MM patients. Our findings shed light on the role of EV-associated MICA allelic variants and ULBP molecules in the modulation of NKG2D-mediated NK cell immunosurveillance in the tumor microenvironment. Moreover, the EV-mediated transfer of NKG2DLs could suggest novel therapeutic approaches based on the usage of engineered nanoparticles aimed at increasing cancer cell immunogenicity.


Subject(s)
Extracellular Vesicles , Multiple Myeloma , Humans , Multiple Myeloma/metabolism , Ligands , NK Cell Lectin-Like Receptor Subfamily K/genetics , NK Cell Lectin-Like Receptor Subfamily K/metabolism , Histocompatibility Antigens Class I/metabolism , Killer Cells, Natural , Extracellular Vesicles/metabolism , Cell Death , Bandages , Tumor Microenvironment
5.
Int J Mol Sci ; 24(7)2023 Apr 06.
Article in English | MEDLINE | ID: mdl-37047835

ABSTRACT

The success of senescence-based anticancer therapies relies on their anti-proliferative power and on their ability to trigger anti-tumor immune responses. Indeed, genotoxic drug-induced senescence increases the expression of NK cell-activating ligands on multiple myeloma (MM) cells, boosting NK cell recognition and effector functions. Senescent cells undergo morphological change and context-dependent functional diversification, acquiring the ability to secrete a vast pool of molecules termed the senescence-associated secretory phenotype (SASP), which affects neighboring cells. Recently, exosomes have been recognized as SASP factors, contributing to modulating a variety of cell functions. In particular, evidence suggests a key role for exosomal microRNAs in influencing many hallmarks of cancer. Herein, we demonstrate that doxorubicin treatment of MM cells leads to the enrichment of miR-433 into exosomes, which in turn induces bystander senescence. Our analysis reveals that the establishment of the senescent phenotype on neighboring MM cells is p53- and p21-independent and is related to CDK-6 down-regulation. Notably, miR-433-dependent senescence does not induce the up-regulation of activating ligands on MM cells. Altogether, our findings highlight the possibility of miR-433-enriched exosomes to reinforce doxorubicin-mediated cellular senescence.


Subject(s)
Antibiotics, Antineoplastic , Bystander Effect , Cellular Senescence , Doxorubicin , Exosomes , MicroRNAs , Multiple Myeloma , Topoisomerase II Inhibitors , Cellular Senescence/drug effects , Multiple Myeloma/drug therapy , Multiple Myeloma/genetics , Multiple Myeloma/pathology , Doxorubicin/pharmacology , Doxorubicin/therapeutic use , Antibiotics, Antineoplastic/pharmacology , Antibiotics, Antineoplastic/therapeutic use , Topoisomerase II Inhibitors/pharmacology , Topoisomerase II Inhibitors/therapeutic use , Humans , Cell Line, Tumor , Exosomes/drug effects , Exosomes/metabolism , DNA Damage , MicroRNAs/genetics , MicroRNAs/metabolism , Tumor Suppressor Protein p53/metabolism , Cyclin-Dependent Kinase Inhibitor p21/metabolism
6.
Cell Biochem Funct ; 40(7): 718-728, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36069062

ABSTRACT

Dendritic cells (DCs) are innate immune cells with a central role in immunity and tolerance. Under steady-state, DCs are scattered in tissues as resting cells. Upon infection or injury, DCs get activated and acquire the full capacity to prime antigen-specific CD4+ and CD8+ T cells, thus bridging innate and adaptive immunity. By secreting different sets of cytokines and chemokines, DCs orchestrate diverse types of immune responses, from a classical proinflammatory to an alternative pro-repair one. DCs are highly heterogeneous, and physiological differences in tissue microenvironments greatly contribute to variations in DC phenotype. Oxygen tension is normally low in some lymphoid areas, including bone marrow (BM) hematopoietic niches; nevertheless, the possible impact of tissue hypoxia on DC physiology has been poorly investigated. We assessed whether DCs are hypoxic in BM and spleen, by staining for hypoxia-inducible-factor-1α subunit (HIF-1α), the master regulator of hypoxia-induced response, and pimonidazole (PIM), a hypoxic marker, and by flow cytometric analysis. Indeed, we observed that mouse DCs have a hypoxic phenotype in spleen and BM, and showed some remarkable differences between DC subsets. Notably, DCs expressing membrane c-kit, the receptor for stem cell factor (SCF), had a higher PIM median fluorescence intensity (MFI) than c-kit- DCs, both in the spleen and in the BM. To determine whether SCF (a.k.a. kit ligand) has a role in DC hypoxia, we evaluated molecular pathways activated by SCF in c-kit+ BM-derived DCs cultured in hypoxic conditions. Gene expression microarrays and gene set enrichment analysis supported the hypothesis that SCF had an impact on hypoxia response and inhibited autophagy-related gene sets. Our results suggest that hypoxic response and autophagy, and their modulation by SCF, can play a role in DC homeostasis at the steady state, in agreement with our previous findings on SCF's role in DC survival.


Subject(s)
CD8-Positive T-Lymphocytes , Stem Cell Factor , Animals , Autophagy , Cell Hypoxia , Cells, Cultured , Cytokines/metabolism , Dendritic Cells , Hypoxia/metabolism , Mice , Mice, Inbred C57BL , Oxygen/metabolism , Stem Cell Factor/metabolism
7.
Life (Basel) ; 12(4)2022 Apr 05.
Article in English | MEDLINE | ID: mdl-35455028

ABSTRACT

Duchenne muscular dystrophy (DMD) is an X-linked disease, caused by a mutant dystrophin gene, leading to muscle membrane instability, followed by muscle inflammation, infiltration of pro-inflammatory macrophages and fibrosis. The calcium-activated potassium channel type 3.1 (KCa3.1) plays key roles in controlling both macrophage phenotype and fibroblast proliferation, two critical contributors to muscle damage. In this work, we demonstrate that pharmacological blockade of the channel in the mdx mouse model during the early degenerative phase favors the acquisition of an anti-inflammatory phenotype by tissue macrophages and reduces collagen deposition in muscles, with a concomitant reduction of muscle damage. As already observed with other treatments, no improvement in muscle performance was observed in vivo. In conclusion, this work supports the idea that KCa3.1 channels play a contributing role in controlling damage-causing cells in DMD. A more complete understanding of their function could lead to the identification of novel therapeutic approaches.

8.
Front Immunol ; 12: 755304, 2021.
Article in English | MEDLINE | ID: mdl-34867987

ABSTRACT

Remarkable progress has been made in the field of anti-tumor immunity, nevertheless many questions are still open. Thus, even though memory T cells have been implicated in long-term anti-tumor protection, particularly in prevention of cancer recurrence, the bases of their variable effectiveness in tumor patients are poorly understood. Two types of memory T cells have been described according to their traffic pathways: recirculating and tissue-resident memory T cells. Recirculating tumor-specific memory T cells are found in the cell infiltrate of solid tumors, in the lymph and in the peripheral blood, and they constantly migrate in and out of lymph nodes, spleen, and bone marrow. Tissue-resident tumor-specific memory T cells (TRM) permanently reside in the tumor, providing local protection. Anti-PD-1/PD-L1, a type of immune checkpoint blockade (ICB) therapy, can considerably re-invigorate T cell response and lead to successful tumor control, even in patients at advanced stages. Indeed, ICB has led to unprecedented successes against many types of cancers, starting a ground-breaking revolution in tumor therapy. Unfortunately, not all patients are responsive to such treatment, thus further improvements are urgently needed. The mechanisms underlying resistance to ICB are still largely unknown. A better knowledge of the dynamics of the immune response driven by the two types of memory T cells before and after anti-PD-1/PD-L1 would provide important insights on the variability of the outcomes. This would be instrumental to design new treatments to overcome resistance. Here we provide an overview of T cell contribution to immunity against solid tumors, focusing on memory T cells. We summarize recent evidence on the involvement of recirculating memory T cells and TRM in anti-PD-1/PD-L1-elicited antitumor immunity, outline the open questions in the field, and propose that a synergic action of the two types of memory T cells is required to achieve a full response. We argue that a T-centric vision focused on the specific roles and the possible interplay between TRM and recirculating memory T cells will lead to a better understanding of anti-PD-1/PD-L1 mechanism of action, and provide new tools for improving ICB therapeutic strategy.


Subject(s)
Immune Checkpoint Inhibitors/immunology , Immunologic Memory/immunology , Neoplasms/immunology , T-Lymphocytes/immunology , Animals , Humans , Neoplasms/drug therapy
9.
Cytometry A ; 99(12): 1171-1175, 2021 12.
Article in English | MEDLINE | ID: mdl-34668313

ABSTRACT

A multicolor flow cytometry panel was designed and optimized to define the following nine mouse T cell subsets: Treg (CD3+ CD4+ CD8- FoxP3+ ), CD4+ T naïve (CD3+ CD4+ CD8- FoxP3- CD44int/low CD62L+ ), CD4+ T central memory (CD3+ CD4+ CD8- FoxP3- CD44high CD62L+ ), CD4+ T effector memory (CD3+ CD4+ CD8- FoxP3- CD44high CD62L- ), CD4+ T EMRA (CD3+ CD4+ CD8- FoxP3- CD44int/low CD62L- ), CD8+ T naïve (CD3+ CD8+ CD4- CD44int/low CD62L+ ), CD8+ T central memory (CD3+ CD8+ CD4- CD44high CD62L+ ), CD8+ T effector memory (CD3+ CD8+ CD4- CD44high CD62L- ), and CD8+ T EMRA (CD3+ CD8+ CD4- CD44int/low CD62L- ). In each T cell subset, a dual staining for Ki-67 expression and DNA content was employed to distinguish the following cell cycle phases: G0 (Ki67- , with 2n DNA), G1 (Ki67+ , with 2n DNA), and S-G2 /M (Ki67+ , with 2n < DNA ≤ 4n). This panel was established for the analysis of mouse (C57BL/6J) spleen.


Subject(s)
Spleen , T-Lymphocytes, Regulatory , Animals , CD4-Positive T-Lymphocytes , CD8-Positive T-Lymphocytes , Cell Cycle , Immunologic Memory , L-Selectin , Memory T Cells , Mice , Mice, Inbred C57BL , T-Lymphocyte Subsets
10.
Cells ; 10(10)2021 10 04.
Article in English | MEDLINE | ID: mdl-34685628

ABSTRACT

'Dysbiosis' of the adult gut microbiota, in response to challenges such as infection, altered diet, stress, and antibiotics treatment has been recently linked to pathological alteration of brain function and behavior. Moreover, gut microbiota composition constantly controls microglia maturation, as revealed by morphological observations and gene expression analysis. However, it is unclear whether microglia functional properties and crosstalk with neurons, known to shape and modulate synaptic development and function, are influenced by the gut microbiota. Here, we investigated how antibiotic-mediated alteration of the gut microbiota influences microglial and neuronal functions in adult mice hippocampus. Hippocampal microglia from adult mice treated with oral antibiotics exhibited increased microglia density, altered basal patrolling activity, and impaired process rearrangement in response to damage. Patch clamp recordings at CA3-CA1 synapses revealed that antibiotics treatment alters neuronal functions, reducing spontaneous postsynaptic glutamatergic currents and decreasing synaptic connectivity, without reducing dendritic spines density. Antibiotics treatment was unable to modulate synaptic function in CX3CR1-deficient mice, pointing to an involvement of microglia-neuron crosstalk through the CX3CL1/CX3CR1 axis in the effect of dysbiosis on neuronal functions. Together, our findings show that antibiotic alteration of gut microbiota impairs synaptic efficacy, suggesting that CX3CL1/CX3CR1 signaling supporting microglia is a major player in in the gut-brain axis, and in particular in the gut microbiota-to-neuron communication pathway.


Subject(s)
Anti-Bacterial Agents/pharmacology , Hippocampus/pathology , Microglia/metabolism , Synapses/metabolism , Animals , CX3C Chemokine Receptor 1/metabolism , Chemokine CX3CL1/metabolism , Gene Expression Regulation/drug effects , Glutamic Acid/metabolism , Inflammation/genetics , Mice , Microglia/drug effects , Neurons/drug effects , Neurons/metabolism , Signal Transduction/drug effects , Synapses/drug effects , Synaptic Transmission/drug effects
11.
Cell Death Dis ; 12(9): 836, 2021 09 04.
Article in English | MEDLINE | ID: mdl-34482362

ABSTRACT

Multiple Myeloma (MM) is an incurable hematologic malignancy of terminally differentiated plasma cells (PCs), where immune interactions play a key role in the control of cancer cell growth and survival. In particular, MM is characterized by a highly immunosuppressive bone marrow microenvironment where the anticancer/cytotoxic activity of Natural Killer (NK) cells is impaired. This study is focused on understanding whether modulation of neddylation can regulate NK cell-activating ligands expression and sensitize MM to NK cell killing. Neddylation is a post-translational modification that adds a ubiquitin-like protein, NEDD8, to selected substrate proteins, affecting their stability, conformation, subcellular localization, and function. We found that pharmacologic inhibition of neddylation using a small-molecule inhibitor, MLN4924/Pevonedistat, increases the expression of the NK cell-activating receptor NKG2D ligands MICA and MICB on the plasma membrane of different MM cell lines and patient-derived PCs, leading to enhanced NK cell degranulation. Mechanistically, MICA expression is upregulated at mRNA level, and this is the result of an increased promoter activity after the inhibition of IRF4 and IKZF3, two transcriptional repressors of this gene. Differently, MLN4924/Pevonedistat induced accumulation of MICB on the plasma membrane with no change of its mRNA levels, indicating a post-translational regulatory mechanism. Moreover, inhibition of neddylation can cooperate with immunomodulatory drugs (IMiDs) in upregulating MICA surface levels in MM cells due to increased expression of CRBN, the cellular target of these drugs. In summary, MLN4924/Pevonedistat sensitizes MM to NK cell recognition, adding novel information on the anticancer activity of neddylation inhibition.


Subject(s)
Histocompatibility Antigens Class I/metabolism , Immunomodulation , Killer Cells, Natural/immunology , Multiple Myeloma/immunology , NEDD8 Protein/antagonists & inhibitors , NK Cell Lectin-Like Receptor Subfamily K/metabolism , Up-Regulation , Aged , Aged, 80 and over , Cell Degranulation/drug effects , Cell Line, Tumor , Cyclopentanes/pharmacology , Female , Gene Expression Regulation, Neoplastic/drug effects , Histocompatibility Antigens Class I/genetics , Humans , Immunologic Factors/pharmacology , Immunomodulation/drug effects , Intracellular Signaling Peptides and Proteins/metabolism , Killer Cells, Natural/drug effects , Killer Cells, Natural/physiology , Ligands , Male , Middle Aged , Multiple Myeloma/genetics , Multiple Myeloma/pathology , NEDD8 Protein/metabolism , Plasma Cells/drug effects , Plasma Cells/metabolism , Promoter Regions, Genetic/genetics , Pyrimidines/pharmacology
12.
Int J Mol Sci ; 22(9)2021 Apr 27.
Article in English | MEDLINE | ID: mdl-33925355

ABSTRACT

Drug-induced liver injury (DILI) is a challenging clinical event in medicine, particularly because of its ability to present with a variety of phenotypes including that of autoimmune hepatitis or other immune mediated liver injuries. Limited diagnostic and therapeutic tools are available, mostly because its pathogenesis has remained poorly understood for decades. The recent scientific and technological advancements in genomics and immunology are paving the way for a better understanding of the molecular aspects of DILI. This review provides an updated overview of the genetic predisposition and immunological mechanisms behind the pathogenesis of DILI and presents the state-of-the-art experimental models to study DILI at the pre-clinical level.


Subject(s)
Chemical and Drug Induced Liver Injury/genetics , Chemical and Drug Induced Liver Injury/immunology , Chemical and Drug Induced Liver Injury/pathology , Genetic Predisposition to Disease/genetics , Hepatitis, Autoimmune/immunology , Humans , Immunogenetics/methods , Liver/pathology , Models, Theoretical , Phenotype , Risk Factors
14.
Cell Death Differ ; 28(7): 2060-2082, 2021 07.
Article in English | MEDLINE | ID: mdl-33531658

ABSTRACT

Cancer stem cells (CSCs) are tumor subpopulations driving disease development, progression, relapse and therapy resistance, and their targeting ensures tumor eradication. CSCs display heterogeneous replication stress (RS), but the functionality/relevance of the RS response (RSR) centered on the ATR-CHK1 axis is debated. Here, we show that the RSR is efficient in primary CSCs from colorectal cancer (CRC-SCs), and describe unique roles for PARP1 and MRE11/RAD51. First, we demonstrated that PARP1 is upregulated in CRC-SCs resistant to several replication poisons and RSR inhibitors (RSRi). In these cells, PARP1 modulates replication fork speed resulting in low constitutive RS. Second, we showed that MRE11 and RAD51 cooperate in the genoprotection and mitosis execution of PARP1-upregulated CRC-SCs. These roles represent therapeutic vulnerabilities for CSCs. Indeed, PARP1i sensitized CRC-SCs to ATRi/CHK1i, inducing replication catastrophe, and prevented the development of resistance to CHK1i. Also, MRE11i + RAD51i selectively killed PARP1-upregulated CRC-SCs via mitotic catastrophe. These results provide the rationale for biomarker-driven clinical trials in CRC using distinct RSRi combinations.


Subject(s)
Colorectal Neoplasms/drug therapy , MRE11 Homologue Protein/drug effects , Mitosis/drug effects , Neoplastic Stem Cells/drug effects , Poly (ADP-Ribose) Polymerase-1/drug effects , Rad51 Recombinase/drug effects , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Colorectal Neoplasms/genetics , DNA Replication/drug effects , Humans , MRE11 Homologue Protein/genetics , Neoplastic Stem Cells/metabolism , Poly (ADP-Ribose) Polymerase-1/genetics , Rad51 Recombinase/genetics
15.
Biology (Basel) ; 9(12)2020 Dec 21.
Article in English | MEDLINE | ID: mdl-33371508

ABSTRACT

Cellular senescence represents a robust tumor-protecting mechanism that halts the proliferation of stressed or premalignant cells. However, this state of stable proliferative arrest is accompanied by the Senescence-Associated Secretory Phenotype (SASP), which entails the copious secretion of proinflammatory signals in the tissue microenvironment and contributes to age-related conditions, including, paradoxically, cancer. Novel therapeutic strategies aim at eliminating senescent cells with the use of senolytics or abolishing the SASP without killing the senescent cell with the use of the so-called "senomorphics". In addition, recent works demonstrate the possibility of modifying the composition of the secretome by genetic or pharmacological intervention. The purpose is not to renounce the potent immunostimulatory nature of SASP, but rather learning to modulate it for combating cancer and other age-related diseases. This review describes the main molecular mechanisms regulating the SASP and reports the evidence of the feasibility of abrogating or modulating the SASP, discussing the possible implications of both strategies.

16.
Front Immunol ; 11: 584626, 2020.
Article in English | MEDLINE | ID: mdl-33324403

ABSTRACT

Immune checkpoints are inhibitory receptor/ligand pairs regulating immunity that are exploited as key targets of anti-cancer therapy. Although the PD-1/PD-L1 pair is one of the most studied immune checkpoints, several aspects of its biology remain to be clarified. It has been established that PD-1 is an inhibitory receptor up-regulated by activated T, B, and NK lymphocytes and that its ligand PD-L1 mediates a negative feedback of lymphocyte activation, contributing to the restoration of the steady state condition after acute immune responses. This loop might become detrimental in the presence of either a chronic infection or a growing tumor. PD-L1 expression in tumors is currently used as a biomarker to orient therapeutic decisions; nevertheless, our knowledge about the regulation of PD-L1 expression is limited. The present review discusses how NF-κB, a master transcription factor of inflammation and immunity, is emerging as a key positive regulator of PD-L1 expression in cancer. NF-κB directly induces PD-L1 gene transcription by binding to its promoter, and it can also regulate PD-L1 post-transcriptionally through indirect pathways. These processes, which under conditions of cellular stress and acute inflammation drive tissue homeostasis and promote tissue healing, are largely dysregulated in tumors. Up-regulation of PD-L1 in cancer cells is controlled via NF-κB downstream of several signals, including oncogene- and stress-induced pathways, inflammatory cytokines, and chemotherapeutic drugs. Notably, a shared signaling pathway in epithelial cancers induces both PD-L1 expression and epithelial-mesenchymal transition, suggesting that PD-L1 is part of the tissue remodeling program. Furthermore, PD-L1 expression by tumor infiltrating myeloid cells can contribute to the immune suppressive features of the tumor environment. A better understanding of the interplay between NF-κB signaling and PD-L1 expression is highly relevant to cancer biology and therapy.


Subject(s)
B7-H1 Antigen/immunology , NF-kappa B/immunology , Neoplasms/immunology , Epithelial-Mesenchymal Transition/immunology , Gene Expression Regulation, Neoplastic/immunology , Humans , Immunity/immunology , Inflammation/immunology , Signal Transduction/immunology
17.
Eur J Immunol ; 50(5): 705-711, 2020 05.
Article in English | MEDLINE | ID: mdl-32034922

ABSTRACT

Glioma is a CNS tumor with few therapeutic options. Recently, host microbiota has been involved in the immune modulation of different tumors, but no data are available on the possible effects of the gut-immune axis on brain tumors. Here, we investigated the effect of gut microbiota alteration in a syngeneic (GL261) mouse model of glioma, treating mice with two antibiotics (ABX) and evaluating the effects on tumor growth, microbe composition, natural killer (NK) cells and microglia phenotype. We report that ABX treatment (i) altered the intestinal microbiota at family level, (ii) reduced cytotoxic NK cell subsets, and (iii) altered the expression of inflammatory and homeostatic proteins in microglia. All these findings could contribute to the increased growth of intracranial glioma that was observed after ABX treatment. These results demonstrate that chronic ABX administration alters microbiota composition and contributes to modulate brain immune state paving the way to glioma growth.


Subject(s)
Anti-Bacterial Agents/adverse effects , Brain Neoplasms/microbiology , Gastrointestinal Microbiome/drug effects , Glioma/microbiology , Killer Cells, Natural/drug effects , Microglia/drug effects , Animals , Bacterial Typing Techniques , Brain Neoplasms/immunology , Brain Neoplasms/pathology , Cell Line, Tumor , DNA, Bacterial/genetics , Disease Models, Animal , Disease Progression , Gastrointestinal Microbiome/genetics , Gentamicins/adverse effects , Glioma/immunology , Glioma/pathology , Humans , Immunologic Surveillance , Killer Cells, Natural/immunology , Killer Cells, Natural/pathology , Male , Mice , Mice, Inbred C57BL , Microglia/immunology , Microglia/pathology , Neoplasm Transplantation , Phylogeny , Tumor Burden/drug effects , Vancomycin/adverse effects
18.
J Immunother Cancer ; 7(1): 290, 2019 11 07.
Article in English | MEDLINE | ID: mdl-31699153

ABSTRACT

BACKGROUND: The peculiar multiple myeloma microenvironment, characterized by up-regulated levels of several inflammatory chemokines, including the CXCR3 receptor ligands CXCL9 and CXCL10, limits NK cell positioning into the bone marrow by interfering with CXCR4 function. It is still unclear if the consequent reduced influx of transferred cells into the tumor represents a potential limiting factor for the success of NK cell-based adoptive therapy. We hypothesize that inhibition of CXCR3 function on NK cells will result in increased tumor clearance, due to higher NK cell bone marrow infiltration. METHODS: Since different activation protocols differently affect expression and function of homing receptors, we analyzed the bone marrow homing properties and anti-tumor efficacy of NK cells stimulated in vitro with two independent protocols. NK cells were purified from wild-type or Cxcr3-/- mice and incubated with IL-15 alone or with a combination of IL-12, IL-15, IL-18 (IL-12/15/18). Alternatively, CXCR3 function was neutralized in vivo using a specific blocking antibody. NK cell functional behavior and tumor growth were analyzed in bone marrow samples by FACS analysis. RESULTS: Both activation protocols promoted degranulation and IFN-γ production by donor NK cells infiltrating the bone marrow of tumor-bearing mice, although IL-15 promoted a faster but more transient acquisition of functional capacities. In addition, IL-15-activated cells accumulated more in the bone marrow in a short time but showed lower persistence in vivo. Targeting of CXCR3 increased the bone marrow homing capacity of IL-15 but not IL12/15/18 activated NK cells. This effect correlated with a superior and durable myeloma clearance capacity of transferred cells in vivo. CONCLUSIONS: Our results demonstrate that in vitro activation affects NK cell anti-myeloma activity in vivo by regulating their BM infiltration. Furthermore, we provided direct evidence that CXCR3 restrains NK cell anti-tumor capacity in vivo according to the activation protocol used, and that the effects of NK cell-based adoptive immunotherapy for multiple myeloma can be improved by increasing their bone marrow homing through CXCR3 inhibition.


Subject(s)
Immunotherapy, Adoptive , Killer Cells, Natural/immunology , Killer Cells, Natural/metabolism , Multiple Myeloma/immunology , Multiple Myeloma/therapy , Receptors, CXCR3/antagonists & inhibitors , Animals , Biomarkers , Cell Line, Tumor , Cell Movement , Chemokines/metabolism , Cytokines/metabolism , Cytotoxicity, Immunologic , Disease Models, Animal , Female , Humans , Immunophenotyping , Lymphocyte Activation/immunology , Mice , Mice, Knockout , Receptors, CXCR3/genetics , Receptors, CXCR3/metabolism
19.
Front Cell Neurosci ; 13: 414, 2019.
Article in English | MEDLINE | ID: mdl-31607865

ABSTRACT

In the CNS, the chemokine CX3CL1 (fractalkine) is expressed on neurons while its specific receptor CX3CR1 is expressed on microglia and macrophages. Microglia play an important role in health and disease through CX3CL1/CX3CR1 signaling, and in many neurodegenerative disorders, microglia dysregulation has been associated with neuro-inflammation. We have previously shown that CX3CL1 has neuroprotective effects against cerebral ischemia injury. Here, we investigated the involvement of CX3CL1 in the modulation of microglia phenotype and the underlying neuroprotective effect on ischemia injury. The expression profiles of anti- and pro-inflammatory genes showed that CX3CL1 markedly inhibited microglial activation both in vitro and in vivo after permanent middle cerebral artery occlusion (pMCAO), accompanied by an increase in the expression of anti-inflammatory genes. Moreover, CX3CL1 induces a metabolic switch in microglial cells with an increase in the expression of genes related to the oxidative pathway and a reduction in those related to the glycolytic pathway, which is the metabolic state associated to the pro-inflammatory phenotype for energy production. The data reported in this paper suggest that CX3CL1 protects against cerebral ischemia modulating the activation state of microglia and its metabolism in order to restrain inflammation and organize a neuroprotective response against the ischemic insult.

20.
Cancers (Basel) ; 11(3)2019 Feb 26.
Article in English | MEDLINE | ID: mdl-30813636

ABSTRACT

Glioblastoma (GBM) is a deadly brain tumor, with fast recurrence even after surgical intervention, radio- and chemotherapies. One of the reasons for relapse is the early invasion of surrounding brain parenchyma by GBM, rendering tumor eradication difficult. Recent studies demonstrate that, in addition to eliminate possible residual tumoral cells after surgery, radiation stimulates the infiltrative behavior of GBM cells. The intermediate conductance of Ca2+-activated potassium channels (KCa3.1) play an important role in regulating the migration of GBM. Here, we show that high dose radiation of patient-derived GBM cells increases their invasion, and induces the transcription of key genes related to these functions, including the IL-4/IL-4R pair. In addition, we demonstrate that radiation increases the expression of KCa3.1 channels, and that their pharmacological inhibition counteracts the pro-invasive phenotype induced by radiation in tumor cells. Our data describe a possible approach to treat tumor resistance that follows radiation therapy in GBM patients.

SELECTION OF CITATIONS
SEARCH DETAIL
...