Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Ocul Oncol Pathol ; 10(1): 43-52, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38751499

ABSTRACT

Purpose: Ocular dirofilariasis is an uncommon zoonotic infection that is usually associated with a carnivore host. In this case series and literature review, we investigate the clinical presentation, management, and histopathology of ocular dirofilariasis. Methods: The database at the Florida Lions Ocular Pathology Laboratory was searched for surgical specimens at the Bascom Palmer Eye Institute under approval of the Institutional Review Board. Patients with a histopathologic diagnosis of dirofilariasis between the years 1962 and 2022 from the Florida Lions Ocular Pathology Laboratory database were included (n = 3). A systematic PubMed search was conducted by two independent authors to identify published cases of ophthalmic dirofilariasis worldwide. Keywords were used to identify articles, and exclusion criteria were applied. Results: Three patients, two males and one female, were identified from the Florida Lions Ocular Pathology Laboratory database with a diagnosis of ocular dirofilariasis. The mean age was 46.7 years (with a range 33-57 years). There were two eyelid lesions (Cases 1 and 3) and one involving the subconjunctival space (Case 2). All three organisms were excised and presumptively identified as Dirofilaria tenuis. All 3 patients were managed with curative surgical removal and recovered completely. Our review of the literature identified 540 published reports and 142 published reports with 186 cases that met the exclusion criteria. Conclusion: We present a case series and literature review of ocular dirofilariasis. Knowledge of the incidence, risk factors, prevention, and diagnosis of this unique parasitic infection will help in proper management and prevent further ocular complications.

2.
Int J Biol Macromol ; 267(Pt 1): 131274, 2024 May.
Article in English | MEDLINE | ID: mdl-38569991

ABSTRACT

The vitreous is a vital component of the eye, occupying a substantial portion of its volume and maintaining its structure. This study delves into the presence and significance of intrinsically disordered proteins (IDPs) within the vitreous, utilizing a dataset of 1240 vitreous proteins previously discovered in the vitreous proteome by Murthy et al.in five healthy subjects. The results indicate that 26.9 % of vitreous proteins are highly disordered, 68.8 % possess moderate disorder, and only 4.3 % are highly ordered. A complex interaction network among these proteins suggests their biological importance, and approximately 25 % may undergo liquid-liquid phase separation (LLPS). These findings offer new perspectives on the vitreous' molecular composition and behavior, potentially impacting our understanding of eye-related diseases, physiological changes such as vitreous syneresis. Further research is needed to translate these insights into clinical applications, although the intrinsic protein disorder and its association with LLPS appears to play a role in vitreous proteome function.


Subject(s)
Intrinsically Disordered Proteins , Proteome , Vitreous Body , Humans , Intrinsically Disordered Proteins/metabolism , Intrinsically Disordered Proteins/chemistry , Proteome/metabolism , Vitreous Body/metabolism , Eye Proteins/metabolism
3.
J Clin Med ; 13(1)2024 Jan 04.
Article in English | MEDLINE | ID: mdl-38202288

ABSTRACT

This comprehensive review explores the role of Functional Near-Infrared Spectroscopy (fNIRS) in advancing our understanding of the visual system. Beginning with an introduction to fNIRS, we delve into its historical development, highlighting how this technology has evolved over time. The core of the review critically examines the advantages and disadvantages of fNIRS, offering a balanced view of its capabilities and limitations in research and clinical settings. We extend our discussion to the diverse applications of fNIRS beyond its traditional use, emphasizing its versatility across various fields. In the context of the visual system, this review provides an in-depth analysis of how fNIRS contributes to our understanding of eye function, including eye diseases. We discuss the intricacies of the visual cortex, how it responds to visual stimuli and the implications of these findings in both health and disease. A unique aspect of this review is the exploration of the intersection between fNIRS, virtual reality (VR), augmented reality (AR) and artificial intelligence (AI). We discuss how these cutting-edge technologies are synergizing with fNIRS to open new frontiers in visual system research. The review concludes with a forward-looking perspective, envisioning the future of fNIRS in a rapidly evolving technological landscape and its potential to revolutionize our approach to studying and understanding the visual system.

5.
Cell Commun Signal ; 21(1): 222, 2023 08 25.
Article in English | MEDLINE | ID: mdl-37626310

ABSTRACT

INTRODUCTION: The PReferentially expressed Antigen in MElanoma (PRAME) protein has been shown to be an independent biomarker for increased risk of metastasis in Class 1 uveal melanomas (UM). Intrinsically disordered proteins and regions of proteins (IDPs/IDPRs) are proteins that do not have a well-defined three-dimensional structure and have been linked to neoplastic development. Our study aimed to evaluate the presence of intrinsic disorder in PRAME and the role these structureless regions have in PRAME( +) Class 1 UM. METHODS: A bioinformatics study to characterize PRAME's propensity for the intrinsic disorder. We first used the AlphaFold tool to qualitatively assess the protein structure of PRAME. Then we used the Compositional Profiler and a set of per-residue intrinsic disorder predictors to quantify the intrinsic disorder. The Database of Disordered Protein Prediction (D2P2) platform, IUPred, FuzDrop, fIDPnn, AUCpred, SPOT-Disorder2, and metapredict V2 allowed us to evaluate the potential functional disorder of PRAME. Additionally, we used the Search Tool for the Retrieval of Interacting Genes (STRING) to analyze PRAME's potential interactions with other proteins. RESULTS: Our structural analysis showed that PRAME contains intrinsically disordered protein regions (IDPRs), which are structureless and flexible. We found that PRAME is significantly enriched with serine (p-value < 0.05), a disorder-promoting amino acid. PRAME was found to have an average disorder score of 16.49% (i.e., moderately disordered) across six per-residue intrinsic disorder predictors. Our IUPred analysis revealed the presence of disorder-to-order transition (DOT) regions in PRAME near the C-terminus of the protein (residues 475-509). The D2P2 platform predicted a region from approximately 140 and 175 to be highly concentrated with post-translational modifications (PTMs). FuzDrop predicted the PTM hot spot of PRAME to be a droplet-promoting region and an aggregation hotspot. Finally, our analysis using the STRING tool revealed that PRAME has significantly more interactions with other proteins than expected for randomly selected proteins of the same size, with the ability to interact with 84 different partners (STRING analysis result: p-value < 1.0 × 10-16; model confidence: 0.400). CONCLUSION: Our study revealed that PRAME has IDPRs that are possibly linked to its functionality in the context of Class 1 UM. The regions of functionality (i.e., DOT regions, PTM sites, droplet-promoting regions, and aggregation hotspots) are localized to regions of high levels of disorder. PRAME has a complex protein-protein interaction (PPI) network that may be secondary to the structureless features of the polypeptide. Our findings contribute to our understanding of UM and suggest that IDPRs and DOT regions in PRAME may be targeted in developing new therapies for this aggressive cancer. Video Abstract.


Subject(s)
Intrinsically Disordered Proteins , Melanoma , Uveal Neoplasms , Humans , Transcription Factors , Antigens, Neoplasm
6.
Invest Ophthalmol Vis Sci ; 64(11): 14, 2023 08 01.
Article in English | MEDLINE | ID: mdl-37561450

ABSTRACT

Purpose: We aimed to characterize the proteome of human tears and assess for the presence of intrinsically disordered proteins (IDPs). IDPs, despite lacking a rigid three-dimensional structure, maintain biological functionality and could shed light on the molecular interactions within tears. Methods: We analyzed a dataset of 1475 proteins identified in the tear film of three healthy subjects. We employed several computational tools, including the Compositional Profiler, Rapid Intrinsic Disorder Analysis Online, Search Tool for the Retrieval of Interacting Genes, and Database of Disordered Protein Predictors to evaluate the intrinsic disorder, protein interactions, and functional characterization of the disordered regions within this proteome. Results: Our analysis showed a notable inclination toward intrinsic disorder. Two out of 10 order-promoting residues and five out of 10 disorder-promoting residues were found enriched. Using the Predictor of Natural Disordered Regions (PONDR) VSL2 output, 95% of these proteins were classified as highly or moderately disordered. We revealed an extensive protein-protein interaction network with significant interaction enrichment. The most disordered proteins exhibited higher disorder binding sites and diverse posttranslational modifications compared to the most ordered ones. Conclusions: To the best of our knowledge, our study is the first comprehensive analysis of intrinsic disorder in the human tear film proteome, and it revealed an abundance of IDPs and their role in protein function and interaction networks. These findings suggest that variations in the intrinsic disorder of a tear film could be impacted by systemic and ocular conditions, offering promising avenues for disease biomarker identification and drug target development. Further research is needed to understand the implications of these findings in human health and disease.


Subject(s)
Proteome , Humans , Proteome/metabolism , Binding Sites , Protein Conformation
7.
Int J Biol Macromol ; 250: 126027, 2023 Oct 01.
Article in English | MEDLINE | ID: mdl-37506796

ABSTRACT

BACKGROUND: Class 2 uveal melanomas are associated with the inactivation of the BRCA1 ((breast cancer type 1 susceptibility protein)-associated protein 1 (BAP1)) gene. Inactivation of BAP1 promotes the upregulation of vitamin K-dependent protein S (PROS1), which interacts with the tyrosine-protein kinase Mer (MERTK) receptor on M2 macrophages to induce an immunosuppressive environment. METHODS: We simulated the interaction of PROS1 with MERTK with ColabFold. We evaluated PROS1 and MERTK for the presence of intrinsically disordered protein regions (IDPRs) and disorder-to-order (DOT) regions to understand their protein-protein interaction (PPI). We first evaluated the structure of each protein with AlphaFold. We then analyzed specific sequence-based features of the PROS1 and MERTK with a suite of bioinformatics tools. RESULTS: With high-resolution, moderate confidence, we successfully modeled the interaction between PROS1 and MERTK (predicted local distance difference test score (pDLLT) = 70.68). Our structural analysis qualitatively demonstrated IDPRs (i.e., spaghetti-like entities) in PROS1 and MERK. PROS1 was 23.37 % disordered, and MERTK was 23.09 % disordered, classifying them as moderately disordered and flexible proteins. PROS1 was significantly enriched in cysteine, the most order-promoting residue (p-value <0.05). Our IUPred analysis demonstrated that there are two disorder-to-order transition (DOT) regions in PROS1. MERTK was significantly enriched in proline, the most disorder-promoting residue (p-value <0.05), but did not contain DOT regions. Our STRING analysis demonstrated that the PPI network between PROS1 and MERTK is more complex than their assumed one-to-one binding (p-value <2.0 × 10-6). CONCLUSION: Our findings present a novel prediction for the interaction between PROS1 and MERTK. Our findings show that PROS1 and MERTK contain elements of intrinsic disorder. PROS1 has two DOT regions that are attractive immunotherapy targets. We recommend that IDPRs and DOT regions found in PROS1 and MERTK should be considered when developing immunotherapies targeting this PPI.


Subject(s)
Melanoma , Uveal Neoplasms , Humans , c-Mer Tyrosine Kinase/genetics , c-Mer Tyrosine Kinase/metabolism , Melanoma/genetics , Uveal Neoplasms/genetics , Carrier Proteins/metabolism , Protein S/genetics , Protein S/metabolism
8.
Am J Med ; 135(9): 1109-1115, 2022 09.
Article in English | MEDLINE | ID: mdl-35580720

ABSTRACT

BACKGROUND: One of the best methods for protection against respiratory diseases is the use of an N95 mask. Supply shortages have demonstrated a significant need for effective alternatives to N95 masks. Benefits of 3D-printed respirators over N95s include reduced cost and ease of production, widespread availability, reusability/sterilizability, and customizability. 3D-printed mask designs have been downloaded thousands of times; however, there is little to no data on the efficacy of these potential alternatives. METHODS: Three of the most popular 3D-printed respirator designs were modified to allow for the Occupational Safety and Health Administration (OSHA) quantitative fit testing that disperses saline into the ambient air and determines concentrations within the mask during multiple trials. Five volunteers conducted standardized fit tests of these masks, as well as an N95 and a KN95, and the results were compared. RESULTS: One of the 3D-printed respirators, low poly COVID-19 face mask respirator (mask 2), achieved a fit factor greater than 100 in every trial, representing sufficient fit according to OSHA protocols. The N95 mask achieved a sufficient fit in 60% of the trials, and none of the remaining masks provided a suitable fit factor reliably according to the OSHA fit test. Further trials showed no change in fit factor when different 3D-printable plastics are used or when a widely available high efficiency particulate air (HEPA) filter was used. CONCLUSION: 3D-printed respirators provide a possible alternative to N95 masks to protect against respiratory pathogens such as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Fit testing results demonstrate that certain 3D-printed mask designs may exceed the fit of N95 masks.


Subject(s)
COVID-19 , Occupational Exposure , COVID-19/prevention & control , Cost-Benefit Analysis , Feasibility Studies , Humans , N95 Respirators , Printing, Three-Dimensional , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL
...