Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Spectrochim Acta A Mol Biomol Spectrosc ; 325: 125057, 2024 Aug 28.
Article in English | MEDLINE | ID: mdl-39216144

ABSTRACT

Azithromycin ethanol solvate monohydrate [C38H72N2O120.5(C2H6O)H2O], abbreviated by AZM-MH-EtOH, was synthesized by slow evaporation method and investigated by powder X-ray diffraction, Raman and infrared (IR) spectroscopy combined with density functional theory (DFT) studies. Electronic and vibrational properties were properly investigated based on a theoretical study of solvation effects, using implicit solvation and solute electron density models. The electronic and vibrational studies were evaluated under aqueous, ethanolic, and vacuum conditions. The electronic structure calculations indicated that the AZM-MH-EtOH is chemically more stable in solvents compared to vacuum condition. Ultraviolet-visible (UV-vis) measurements confirmed the stability of the material in ethanolic medium, due to higher absorbance values compared to the aqueous medium. Vibrational changes were observed in the Raman and IR bands, which have connection with hydrogen bonds. The experimental vibration modes showed better accordance with the predicted modes' values under solvation effects, but a slight divergence is noticed when we compared to vibration modes obtained in vacuum. Furthermore, the results have revealed a greater affinity profile of AZM-MH-EtOH for water and ethanol solvents compared to theoretical data under vacuum condition.

2.
Int J Pharm X ; 1: 100026, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31517291

ABSTRACT

In this study, a method is described to determine the monolayer loading capacity (MLC) of the drugs naproxen and ibuprofen, both having high recrystallization tendencies, in mesoporous silica (MS), a well known carrier that is able to stabilize the amorphous form of a drug. The stabilization has been suggested to be due to direct absorption of the drug molecules onto the MS surface, i.e. the drug monolayer. In addition, drug that is not in direct contact with MS surface can fill the pores up to its pore filling capacity (PFC) and is potentially stabilized by confinement due to the pore size being smaller than a crystal nuclei. For drugs with high recrystallization tendencies, any drug outside the pores crystallizes due to its poor physical stability. The drug monolayer does not contribute to the glass transition temperature (Tg ) in the DSC, however, the confined amorphous drug above MLC has a Tg and the heat capacity (ΔC p) over the Tg increases with an increasing fraction of confined amorphous drug. Hence, several drug loading values above the MLC were investigated towards the presence of a Tg and ΔC p using differential scanning calorimetry (DSC). A linear correlation between the amount of confined amorphous drug and its ΔC p was identified for the mixtures between the MLC and PFC. By subsequent extrapolation to zero ΔC p the experimental MLC could be determined. Using theoretical density functional theory (DFT) and ab initio Molecular Dynamics (AIMD), the binding energies for the monolayer suggested that the monolayer in fact is thermodynamically more favorable than the crystalline form, whereas the confined amorphous form is thermodynamically less favorable. Consequently, a physical stability study showed that the confined amorphous drugs above the MLC were thermodynamically unstable and consequently flowing out of the pores in order to crystallize, whereas the monolayer remained physically stable.

3.
J Control Release ; 303: 12-23, 2019 06 10.
Article in English | MEDLINE | ID: mdl-30980853

ABSTRACT

Mucoadhesive drug formulations have been studied and used as alternatives to conventional formulations in order to achieve prolonged retention at the intended site. In addition to providing a controlled drug release, several drugs and disease conditions might benefit from mucoadhesive formulations, contributing to better therapeutic outcomes. Here, we describe the development and the in vitro/in vivo characterization of a mucoadhesive in situ gellifying formulation using PF127, a thermo reversible polymer, entrapping budesonide (BUD), a potent corticosteroid used for the treatment of a wide range of inflammatory diseases, including those affecting mucosas, such as in the GI tract. PF127 formulations (15-17%) were successfully prepared by a cold method as a thermo reversible in situ gelling dispersion for mucosal drug delivery, as confirmed by DSC. Sol-gel temperatures of PF127 formulations (25-39 °C) were observed by dynamic gelation and determined by microrheology and oscillatory rheometry. X-ray diffractograms and TEM images showed that BUD was completely solubilized within the polymeric micelles. In vitro, the gels showed 5-14 g force of mucoadhesion, and the ex vivo studies confirmed that the formulation efficiently adhered to the mucosa. Histopathological analysis combined with fluorescence images and ex vivo intestinal permeation confirmed that the formulation remained on the TGI mucosa for at least 4 h after administration. In vivo studies conducted in a murine model of intestinal mucositis demonstrated that the 16% PF127 BUD formulation was able to resolve the inflammatory injury in the intestinal mucosa. Results demonstrate that fine-tuning of PF127 formulations along with adequate selection of the drug agent, thorough characterization of the dispersions and their interactions with biological interfaces leads to the development of effective controlled drug delivery systems targeted to GI inflammatory diseases.


Subject(s)
Anti-Inflammatory Agents/administration & dosage , Budesonide/administration & dosage , Mucositis/drug therapy , Poloxamer/administration & dosage , Adhesiveness , Animals , Delayed-Action Preparations/administration & dosage , Duodenum/drug effects , Duodenum/pathology , Esophageal Mucosa/chemistry , Hot Temperature , Intestinal Absorption , Intestinal Mucosa/metabolism , Male , Mice , Rats, Wistar , Rheology
SELECTION OF CITATIONS
SEARCH DETAIL