Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Front Plant Sci ; 8: 961, 2017.
Article in English | MEDLINE | ID: mdl-28659939

ABSTRACT

Root-knot nematodes induce galls that contain giant-feeding cells harboring multiple enlarged nuclei within the roots of host plants. It is recognized that the cell cycle plays an essential role in the set-up of a peculiar nuclear organization that seemingly steers nematode feeding site induction and development. Functional studies of a large set of cell cycle genes in transgenic lines of the model host Arabidopsis thaliana have contributed to better understand the role of the cell cycle components and their implication in the establishment of functional galls. Mitotic activity mainly occurs during the initial stages of gall development and is followed by an intense endoreduplication phase imperative to produce giant-feeding cells, essential to form vigorous galls. Transgenic lines overexpressing particular cell cycle genes can provoke severe nuclei phenotype changes mainly at later stages of feeding site development. This can result in chaotic nuclear phenotypes affecting their volume. These aberrant nuclear organizations are hampering gall development and nematode maturation. Herein we report on two nuclear volume assessment methods which provide information on the complex changes occurring in nuclei during giant cell development. Although we observed that the data obtained with AMIRA tend to be more detailed than Volumest (Image J), both approaches proved to be highly versatile, allowing to access 3D morphological changes in nuclei of complex tissues and organs. The protocol presented here is based on standard confocal optical sectioning and 3-D image analysis and can be applied to study any volume and shape of cellular organelles in various complex biological specimens. Our results suggest that an increase in giant cell nuclear volume is not solely linked to increasing ploidy levels, but might result from the accumulation of mitotic defects.

2.
Ann Bot ; 119(5): 775-789, 2017 Mar 01.
Article in English | MEDLINE | ID: mdl-28087659

ABSTRACT

BACKGROUND: Plant-parasitic nematode interactions occur within a vast molecular plant immunity network. Following initial contact with the host plant roots, plant-parasitic nematodes (PPNs) activate basal immune responses. Defence priming involves the release in the apoplast of toxic molecules derived from reactive species or secondary metabolism. In turn, PPNs must overcome the poisonous and stressful environment at the plant-nematode interface. The ability of PPNs to escape this first line of plant immunity is crucial and will determine its virulence. SCOPE: Nematodes trigger crucial regulatory cytoprotective mechanisms, including antioxidant and detoxification pathways. Knowledge of the upstream regulatory components that contribute to both of these pathways in PPNs remains elusive. In this review, we discuss how PPNs probably orchestrate cytoprotection to resist plant immune responses, postulating that it may be derived from ancient molecular mechanisms. The review focuses on two transcription factors, DAF-16 and SKN-1 , which are conserved in the animal kingdom and are central regulators of cell homeostasis and immune function. Both regulate the unfolding protein response and the antioxidant and detoxification pathways. DAF-16 and SKN-1 target a broad spectrum of Caenorhabditis elegans genes coding for numerous protein families present in the secretome of PPNs. Moreover, some regulatory elements of DAF-16 and SKN-1 from C. elegans have already been identified as important genes for PPN infection. CONCLUSION: DAF-16 and SKN-1 genes may play a pivotal role in PPNs during parasitism. In the context of their hub status and mode of regulation, we suggest alternative strategies for control of PPNs through RNAi approaches.


Subject(s)
Helminth Proteins/genetics , Nematoda/physiology , Plant Diseases/parasitology , Plant Immunity , Transcription Factors/genetics , Animals , Helminth Proteins/metabolism , Host-Parasite Interactions , Nematoda/genetics , Plants/parasitology , Transcription Factors/metabolism
3.
Plant Cell Environ ; 40(7): 1174-1188, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28103637

ABSTRACT

Cell cycle control in galls provoked by root-knot nematodes involves the activity of inhibitor genes like the Arabidopsis ICK/KRP members. Ectopic KRP1, KRP2 and KRP4 expression resulted in decreased gall size by inhibiting mitotic activity, whereas KRP6 induces mitosis in galls. Herein, we investigate the role of KRP3, KRP5 and KRP7 during gall development and compared their role with previously studied members of this class of cell cycle inhibitors. Overexpression of KRP3 and KRP7 culminated in undersized giant cells, with KRP3OE galls presenting peculiar elongated giant cells. Nuclei in KRP3OE and KRP5OE lines presented a convoluted and apparently connected phenotype. This appearance may be associated with the punctuated protein nuclear localization driven by specific common motifs. As well, ectopic expression of KRP3OE and KRP5OE affected nematode development and offspring. Decreased mitotic activity in galls of KRP3OE and KRP7OE lines led to a reduced gall size which presented distinct shapes - from more elongated like in the KRP3OE line to small rounded like in the KRP7OE line. Results presented strongly support the idea that induced expression of cell cycle inhibitors such as KRP3 and KRP7 in galls can be envisaged as a conceivable strategy for nematode feeding site control in crop species attacked by phytopathogenic nematodes.


Subject(s)
Arabidopsis Proteins/genetics , Arabidopsis/cytology , Carrier Proteins/genetics , Cyclin-Dependent Kinase Inhibitor Proteins/genetics , Tylenchoidea/pathogenicity , Animals , Arabidopsis/genetics , Arabidopsis/parasitology , Arabidopsis Proteins/metabolism , Carrier Proteins/metabolism , Cell Cycle/genetics , Cell Cycle Proteins , Cell Nucleus/genetics , Cyclin-Dependent Kinase Inhibitor Proteins/metabolism , Gene Expression Regulation, Plant , Host-Parasite Interactions/genetics , Leupeptins/pharmacology , Plant Roots/metabolism , Plant Roots/parasitology , Plant Tumors/genetics , Plants, Genetically Modified , Ploidies , Promoter Regions, Genetic , Tylenchoidea/physiology
4.
PLoS One ; 8(12): e85364, 2013.
Article in English | MEDLINE | ID: mdl-24392004

ABSTRACT

The root-knot nematode Meloidogyne incognita causes serious damage and yield losses in numerous important crops worldwide. Analysis of the M. incognita genome revealed a vast number of proteases belonging to five different catalytic classes. Several reports indicate that M. incognita proteases could play important roles in nematode parasitism, besides their function in ordinary digestion of giant cell contents for feeding. The precise roles of these proteins during parasitism however are still unknown, making them interesting targets for gene silencing to address protein function. In this study we have knocked-down an aspartic (Mi-asp-1), a serine (Mi-ser-1) and a cysteine protease (Mi-cpl-1) by RNAi interference to get an insight into the function of these enzymes during a host/nematode interaction. Tobacco lines expressing dsRNA for Mi-ser-1 (dsSER), Mi-cpl-1 (dsCPL) and for the three genes together (dsFusion) were generated. Histological analysis of galls did not show clear differences in giant cell morphology. Interestingly, nematodes that infected plants expressing dsRNA for proteases produced a reduced number of eggs. In addition, nematode progeny matured in dsSER plants had reduced success in egg hatching, while progeny resulting from dsCPL and dsFusion plants were less successful to infect wild-type host plants. Quantitative PCR analysis confirmed a reduction in transcripts for Mi-cpl-1 and Mi-ser-1 proteases. Our results indicate that these proteases are possibly involved in different processes throughout nematode development, like nutrition, reproduction and embryogenesis. A better understanding of nematode proteases and their possible role during a plant-nematode interaction might help to develop new tools for phytonematode control.


Subject(s)
Gene Knockdown Techniques , Nicotiana/genetics , Peptide Hydrolases/deficiency , Peptide Hydrolases/genetics , RNA, Double-Stranded/genetics , Tylenchoidea/enzymology , Tylenchoidea/physiology , Animals , Base Sequence , Computer Simulation , Expressed Sequence Tags , Female , Ovum/growth & development , Ovum/metabolism , Plants, Genetically Modified , RNA Interference , RNA, Messenger/genetics , RNA, Messenger/metabolism , Tylenchoidea/genetics , Tylenchoidea/growth & development
SELECTION OF CITATIONS
SEARCH DETAIL
...