Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Cancer Res ; 79(20): 5407-5417, 2019 10 15.
Article in English | MEDLINE | ID: mdl-31455691

ABSTRACT

Reactive oxygen species play an important role in cancer, however, their promiscuous reactivity, low abundance, and short-lived nature limit our ability to study them in real time in living subjects with conventional noninvasive imaging methods. Photoacoustic imaging is an emerging modality for in vivo visualization of molecular processes with deep tissue penetration and high spatiotemporal resolution. Here, we describe the design and synthesis of a targeted, activatable probe for photoacoustic imaging, which is responsive to one of the major and abundant reactive oxygen species, hydrogen peroxide (H2O2). This bifunctional probe, which is also detectable with fluorescence imaging, is composed of a heptamethine carbocyanine dye scaffold for signal generation, a 2-deoxyglucose cancer localization moiety, and a boronic ester functionality that specifically detects and reacts to H2O2. The optical properties of the probe were characterized using absorption, fluorescence, and photoacoustic measurements; upon addition of pathophysiologic H2O2 concentrations, a clear increase in fluorescence and red-shift of the absorption and photoacoustic spectra were observed. Studies performed in vitro showed no significant toxicity and specific uptake of the probe into the cytosol in breast cancer cell lines. Importantly, intravenous injection of the probe led to targeted uptake and accumulation in solid tumors, which enabled noninvasive photoacoustic and fluorescence imaging of H2O2. In conclusion, the reported probe shows promise for the in vivo visualization of hydrogen peroxide. SIGNIFICANCE: This study presents the first activatable and cancer-targeted hydrogen peroxide probe for photoacoustic molecular imaging, paving the way for visualization of hydrogen peroxide at high spatiotemporal resolution in living subjects.Graphical Abstract: http://cancerres.aacrjournals.org/content/canres/79/20/5407/F1.large.jpg.


Subject(s)
Adenocarcinoma/chemistry , Adenocarcinoma/diagnostic imaging , Fluorescent Dyes/analysis , Hydrogen Peroxide/analysis , Optical Imaging/methods , Photoacoustic Techniques/methods , Piperazines/analysis , Absorption, Radiation , Adenocarcinoma/secondary , Animals , Cell Line, Tumor , Deoxyglucose/pharmacokinetics , Fluorescent Dyes/chemical synthesis , Fluorescent Dyes/pharmacokinetics , Fluorescent Dyes/toxicity , Heterografts , Humans , Hydrogen Peroxide/pharmacology , Liver Neoplasms/chemistry , Liver Neoplasms/diagnostic imaging , Liver Neoplasms/secondary , MCF-7 Cells , Mice , Mice, Nude , Molecular Imaging/methods , Neoplasm Transplantation , Oxidative Stress , Piperazines/chemical synthesis , Piperazines/pharmacokinetics , Piperazines/toxicity , Tissue Distribution
2.
Nucleic Acids Res ; 47(8): 3862-3874, 2019 05 07.
Article in English | MEDLINE | ID: mdl-30892612

ABSTRACT

Genomic maps of DNA G-quadruplexes (G4s) can help elucidate the roles that these secondary structures play in various organisms. Herein, we employ an improved version of a G-quadruplex sequencing method (G4-seq) to generate whole genome G4 maps for 12 species that include widely studied model organisms and also pathogens of clinical relevance. We identify G4 structures that form under physiological K+ conditions and also G4s that are stabilized by the G4-targeting small molecule pyridostatin (PDS). We discuss the various structural features of the experimentally observed G-quadruplexes (OQs), highlighting differences in their prevalence and enrichment across species. Our study describes diversity in sequence composition and genomic location for the OQs in the different species and reveals that the enrichment of OQs in gene promoters is particular to mammals such as mouse and human, among the species studied. The multi-species maps have been made publicly available as a resource to the research community. The maps can serve as blueprints for biological experiments in those model organisms, where G4 structures may play a role.


Subject(s)
Chromosome Mapping/methods , G-Quadruplexes , Genome , Aminoquinolines/chemistry , Animals , Arabidopsis/classification , Arabidopsis/genetics , Base Sequence , Caenorhabditis elegans , Drosophila melanogaster/classification , Drosophila melanogaster/genetics , Escherichia coli/classification , Escherichia coli/genetics , High-Throughput Nucleotide Sequencing/statistics & numerical data , Humans , Leishmania major/classification , Leishmania major/genetics , Mice , Phylogeny , Picolinic Acids/chemistry , Plasmodium falciparum/classification , Plasmodium falciparum/genetics , Rhodobacter sphaeroides/classification , Rhodobacter sphaeroides/genetics , Saccharomyces cerevisiae/classification , Saccharomyces cerevisiae/genetics , Trypanosoma brucei brucei/classification , Trypanosoma brucei brucei/genetics , Zebrafish/classification , Zebrafish/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...